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Executive Summary

This report describes the research plan and results of a PCOR project that followed a

statement of work defined in an intra-agency agreement (IAA) between the Office of the

Assistant Secretary for Planning and Evaluation (ASPE) and the National Library of

Medicine (NLM). ASPE coordinates efforts to build data capacity for patient-centered

outcomes research (PCOR). As part of these efforts, ASPE and NLM collaborated on

a project about detecting tuberculosis drug resistance using artificial intelligence and

machine learning. The project goal was to create a foundation to advance the use of ar-

tificial intelligence (AI) for Patient-Centered Outcomes Research (PCOR) and clinical

practice, using existing and to be acquired TB Portals data from the National Institute

of Allergy and Infectious Diseases (NIAID). The data of the TB Portals program pro-

vided by the Office of Cyber Infrastructure and Computational Biology (OCICB), NI-

AID, offers valuable training data for machine classifiers. The data allows researchers to

train classifiers that discriminate between drug-resistant and drug-sensitive tuberculo-

sis based on socioeconomic, geographic, clinical, laboratory, radiographic, and genomic

data.

Machine learning is a type of AI where a computer uses training data sets composed

of large and varied amounts of data to “learn” how to identify patterns with little human

intervention. Industry experts have acknowledged that large amounts of high-quality

training data are a critical part of the foundation that will support researchers’ use

of machine learning to accelerate the discovery of novel disease-outcome correlations

and inform the design of prevention and treatment studies. High-quality training data

sets that are well-labeled and structured, use standard data models and common data

elements annotated by domain experts, and combine previously unconnected data re-

sources that can be used to train algorithms to elucidate knowledge and extract relevant

data points for research. AI and associated innovative technologies like machine learn-

ing have the power to consume large amounts of data in varied, complex formats to

more quickly identify effective treatments, potentially accelerating clinical innovation

by speeding up the research lifecycle and the application of evidence in clinical settings.

This project established a foundation for researchers to use AI to develop scientific

approaches so healthcare providers can match patients to the best treatments based on

their specific health conditions, life experiences, and genetic/phenotypic profiles.

The project was executed as part of a larger FY2019 OS-PCORTF project, in which

NLM worked on the drug-resistant tuberculosis use case. The general objective was to

enhance the capacity of PCOR researchers to use machine learning by developing and

disseminating several resources that will present not only training data and methods
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but also lessons learned from the processes and implementation. The project curated

high-quality training sets of quality clinical research data collected with NIAID. This

included clinical images such as frontal chest X-rays (CXR) and computed tomography

scans (CT), clinical and socioeconomic data, and genomic pathogen information of

thousands of patients with drug-sensitive and drug-resistant tuberculosis (TB). These

training data sets were used to develop, train, and improve machine learning models for

detecting TB drug resistance. Building the capacity of researchers to compare the health

outcomes of innovative approaches in delivering and managing care for TB supports

the tenets outlined in the OS-PCORTF funding priority, value-based care and health

outcomes. A consistent mission goal is to predict drug resistance in a patient early

on and administer the appropriate patient-specific drugs for more efficient treatment.

Successful implementation of this idea would be a significant breakthrough in the fight

against drug-resistant TB and could save many lives.

Deliverables were made available via TB Portals and a GitHub software reposi-

tory, including training data, machine learning algorithms, and trained models. The

tools and knowledge generated from this project will help PCOR researchers to pro-

duce findings that could impact clinical practice. The results will encourage those

building upon this project’s deliverables to develop similar use cases in other areas.

Furthermore, as regulatory agencies develop national policies that increasingly consider

patient-generated information in the approval of drugs and devices, evidence generated

from the application of machine learning to patient-centered outcomes research will be

beneficial.
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1 Introduction

This project aimed to advance the use of artificial intelligence (AI) for Patient-Centered

Outcomes Research (PCOR) and clinical practice. According to the Office of the As-

sistant Secretary for Planning and Evaluation (ASPE), ”Patient-centered outcomes re-

search is designed to produce new scientific evidence that informs and supports the health

care decisions of patients, families, and their health care providers. PCOR studies focus

on the effectiveness of prevention and treatment options with consideration of the prefer-

ences, values, and questions patients face when making healthcare choices. The validity

of PCOR findings is strengthened by a robust data infrastructure within HHS agencies

that supports rigorous analyses and generates relevant findings that help inform deci-

sions.” Please see the following page for a current portfolio of PCOR projects and their

contributions to building data capacity that meets current HHS priorities, https://

aspe.hhs.gov/collaborations-committees-advisory-groups/os-pcortf. Specifi-

cally, this project was concerned with providing training data for machine learning to

enhance PCOR data infrastructure.

The project was part of a larger FY 2019 project supported by the Office of the

Secretary Patient-Centered Outcomes Research Trust Fund (OS-PCORTF), which fea-

tured the National Library of Medicine (NLM) and the National Coordinator for Health

Information Technology (ONC) as project leads. While NLM developed a use case for

drug-resistant tuberculosis (TB), as outlined in this report, ONC worked in parallel

with ASPE on a second kidney-related use case. Both projects shared the same objec-

tive and common goal of enhancing the capacity of PCOR researchers to use machine

learning by developing and disseminating several resources, including training data,

training methods, and lessons learned. Further details regarding the kidney use case

can be found in the final report by ONC.

In collaboration with the Office of Cyber Infrastructure and Computational Biology

(OCICB) at the National Institute of Allergy and Infectious Diseases (NIAID), NLM

collected high-quality training sets for TB drug resistance. These sets comprise clinical

images in the form of X-rays and computed tomography scans (CTs), clinical data,

and genome information about the pathogen for drug-sensitive and drug-resistant TB.

During the project, the collected sets have been used to train various machine learning

models, such as TB vs. not TB or drug-sensitive vs. drug-resistant classifiers. Further-

more, the data was used to evaluate and improve the performance of these classifiers

for TB drug resistance detection.

NLM has a long tradition of carrying out research in machine learning and compu-

tational image analysis for biomedical image processing. Many staff scientists at NLM
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are subject matter experts with strong publication records in these areas, including TB

screening. Therefore, NLM was well set up to develop machine learning algorithms for

detecting drug resistance in radiographs, using the latest techniques available, and to

accomplish the project goal and the specific tasks described in this report. All activities

of NLM were coordinated with NIAID so that all data and algorithms developed are

consistent with TB Portals. NIAID provided images and clinical data, and NLM cu-

rated the data for machine learning and developed and tested machine learning models

with this data.

Building the capacity of researchers to compare the health outcomes of innovative

approaches in delivering and managing care for TB supports the tenets outlined in

the OS-PCORTF funding priority, value-based care and health outcomes. Therefore,

a consistent mission goal is to predict drug resistance in a patient early on and ad-

minister the appropriate patient-specific drugs for more efficient treatment. Successful

implementation of this idea would be a significant breakthrough in the fight against

drug-resistant tuberculosis and could save many lives.

2 Background and Rationale

NLM is part of the National Institutes of Health (NIH), which supports the generation

and analysis of substantial quantities of biomedical research data, as outlined in the

agency’s strategic plan for data science. This includes the integration of clinical and

observational data into biomedical data science. One of the ongoing large-scale efforts

to build high-value resources that include patient clinical and observational data is the

TB Portals Program (TBPP) initiated by NIAID, also part of NIH [22]. TBPP is

a multi-national collaboration for data sharing and analysis to advance TB research.

A consortium of clinicians and scientists from countries with a heavy burden of TB,

especially drug-resistant TB, work with data scientists and information technology pro-

fessionals to collect multi-domain TB data and make it available to clinical and research

communities.

TB is a serious worldwide public health threat [9]. It is an airborne disease caused

by Mycobacterium tuberculosis (MTB) bacteria, which were first discovered in 1882.

Tuberculosis is a curable infection, and the worldwide TB mortality rate is decreasing

due to a global effort to improve TB control and treatment. However, even today, after

the development of advanced medical treatment and diagnostic technology, TB is the

leading cause of death from infectious diseases worldwide. Approximately ten million

people are estimated to have TB, which claims around 1.5 million lives each year.
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Curing TB requires prolonged treatment with several drugs. There are currently

more than 20 drugs in use against TB. The five most commonly used drugs, first-

line drugs, are typically used for TB patients without prior TB drug treatment. This

includes the drugs isoniazid, rifampicin, and three others. It is essential that several TB

drugs are taken together to avoid becoming resistant to an individual drug. To avoid

drug resistance, it is also very important that a patient adheres strictly to the treatment

regimen over several months without interruptions. The drugs for the treatment of drug-

resistant TB are more expensive and have more side effects. They are grouped according

to their effectiveness and use experience and belong to the so-called second-line drugs,

reserve drugs for treating drug resistance.

A patient with TB is drug-sensitive if the bacteria causing the infection respond

to all drugs. Suppose a patient has contracted drug-resistant TB, either by direct

transmission from another infected person or due to improper treatment. In that case,

the TB bacteria will not respond to at least one of the primary drugs. Two main types

of drug resistance are MDR-TB and XDR-TB. MDR-TB, or multidrug-resistant TB, is

defined as resistance to at least isoniazid or rifampicin, two of the most effective first-

line TB drugs. XDR-TB, or extensively drug-resistant TB, is caused by bacteria that,

in addition to resistance against isoniazid or rifampicin, are resistant to several other

drugs, including at least one of the second-line drugs. While these are the two main

types of TB drug resistance, additional categories are sometimes used depending on

the number of drugs to which the bacteria do not respond, including resistance against

individual drugs and resistance against most existing drugs. Treatment of the latter

is extremely difficult. In 2019, according to the World Health Organization (WHO),

nearly half a million people developed rifampicin-resistant TB (RR-TB). Globally, 3.3%

of new TB cases and 17.7% of previously treated cases had MDR/RR-TB [9].

MDR-TB is concerning because it is difficult to diagnose, and it takes more time,

often more than two years, and costs to treat patients. One of the significant challenges

for controlling MDR-TB lies in diagnosing drug resistance of TB-suspected patients

during their first visit. Conventionally, drug susceptibility testing is performed on a

sputum sample to identify the resistant status to several drugs, which requires a well-

equipped laboratory facility and takes four to six weeks to obtain the laboratory results.

The development of Xpert MTB/RIF, a real-time test based on polymerase chain re-

action (PCR) for genetic mutations in the MTB genome associated with resistance,

specifically Rifampicin (RIF) resistance, has reduced the laboratory time needed for

the detection of MDR-TB. However, the test still produces many inconclusive results,

and its deployment in resource-constrained settings is expensive. In addition, the test

requires a sputum sample, which can be difficult to obtain, especially from children.
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Therefore, detecting MDR-TB is still challenging, and the conventional chest X-ray

(CXR) remains a valuable tool in the detection, screening, and surveillance of MDR-

TB, thanks to its widespread availability.

TBPP is a web-based, open-access repository of socioeconomic/geographic, clini-

cal, laboratory, radiographic, and genomic data from drug-resistant TB patient cases

with linked physical samples [22]. Country sites in Eastern Europe, Central Asia, and

sub-Saharan Africa share data through TBPP. Representatives from participating coun-

tries comprise the TBPP Steering Committee, which provides feedback and guidance

on developing TBPP resources, tools, and new research studies. The program aims to

add advanced analytical tools to perform domain-specific and meta-domain analyses

of TBPP data, for example, using modern machine learning and computational im-

age analysis. The data and tools brought together by TBP will enable researchers to

answer important questions about diagnosing drug-resistant TB and treating TB pa-

tients. With the recent advances in computational methods for quantitative imaging,

in particular, the application of powerful deep learning methods on sizeable medical

image sets, automatic screening for infectious diseases has shown promising results.

Quantitative imaging allows computer-assisted detection methods to assess infec-

tious disease severity and response to therapy. It is an interdisciplinary field involving

clinical research of infectious diseases under various imaging modalities, including CXR,

computed tomography (CT), and others. It can leverage radiology to detect and treat

emerging pathogens, epidemics, and pandemics. Therefore, this project aims to develop

new ways of detecting drug resistance in chest radiographs by using deep learning in

combination with large image repositories and clinical data. The long-term goal is to

create an efficient and accurate system that can discriminate between drug-resistant

and drug-sensitive TB by detecting abnormal patterns predictive of treatment out-

comes [17].

3 Objectives

This section describes the project’s purpose and lists the key objectives and deliverables

based on the original statement of work.

3.1 Project Purpose

The project aimed to acquire and curate radiographic images (CXR and CT) for ma-

chine learning and make this data publicly available to the research community via the

NIAID TB Portals Program (TBPP). The TBPP platform engages researchers in con-
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ducting patient-centered outcomes research related to drug-resistant tuberculosis and

precision treatment. While the total number of tuberculosis cases has decreased over the

last few years, the rise of drug-resistant tuberculosis has reduced the chance of control-

ling the disease. TBPP supports research in the decision-making and timely diagnosis

of drug-resistant tuberculosis, which is essential to administering adequate treatment

regimens and stopping the further transmission of drug-resistant tuberculosis.

In particular, the project addressed the following objectives:

1. Developing high-quality training data sets for machine learning to detect drug-

resistant TB in radiographs in collaboration with NIAID.

2. Developing and evaluating machine learning methods for radiographic, clinical,

and genomic data to discriminate between drug-resistant and drug-sensitive TB.

3. Disseminating resources, including training data, tools, and lessons learned to

stimulate the application of these methods to a broader array of use cases by

PCOR researchers.

4. Developing an implementation guide detailing each method used and the generic

aspects of the data that each method leverages to facilitate applications to a

broader array of use cases.

3.2 Relevance for Patient-Centered Outcomes Research

The project supported PCOR and comparative effectiveness by providing diagnostic

tools based on machine learning and computational image analysis. Computational

models are trained by evaluating the effectiveness of current treatments to learn better

ways of delivering care to potentially drug-resistant TB patients. The idea was to learn

early signs of drug-resistant TB infections by exploiting pictorial information from ra-

diographs and clinical, patient-specific socioeconomic, and genomic data. Identifying

drug resistance at an early stage of a TB infection allows using more appropriate drugs

for treatment, leading to more effective treatments and faster recovery of patients. This

is a critical PCOR problem as drug resistance in patients infected with tuberculosis has

been identified as a significant global public health concern projected to expand in com-

ing years; see also this WHO link for more information on TB drug resistance, https://

www.who.int/activities/tackling-the-drug-resistant-tb-crisis (last accessed

in December 2022).

The project supported federal and Department of Health and Human Services (HHS)

investments in the Precision Medicine Initiative (PMI) and TBPP by using AI to iden-

tify optimal patient-specific treatments. Applying robust machine learning to PCOR
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and the general healthcare space depends on large, high-quality training data sets for

modeling data representations.

Using the deliverables of this project, PCOR researchers can execute and test the

provided models on new data or retrain new models with their data. This may lead

to improved models providing more insights. The project enhanced the capacity of

PCOR researchers to use machine learning by developing and disseminating several

resources that present not only training data and methods but also lessons learned

from the execution of the tasks. Specifically, this project provided radiographs and

clinical data of thousands of patients with drug-sensitive and drug-resistant TB, which

have been made available via TBPP at NIAID. The results of this project, including

the lessons learned, have been shared at conferences and public meetings to facilitate

the application of the methods to a broader range of use cases.

3.3 Deliverables

The deliverables for the objectives fell into three categories:

1. Developing high-quality training data (Objective 1) This deliverable in-

volved collecting training data for machine learning, including X-rays, CTs, and

clinical data, in standard formats, such as DICOM or CSV files, suitable for

training classifiers to detect TB drug resistance.

2. Developing machine learning classifiers (Objective 2) This class of deliv-

erables defined several classification tasks to discriminate between drug-resistant

and drug-sensitive TB and detect resistance types. In particular, the following

classification tasks were addressed: normal vs. abnormal (TB vs. not TB for

radiographs), drug-sensitive vs. drug-resistant TB, and MDR vs. XDR.

3. Dissemination of resources, results, and lessons learned (Objective 3

and 4) The third category of deliverables required disseminating the developed

training data and software tools. It also asked for the presentation of the results

in webinars and publications in conference proceedings and journal papers.

Figure 1 shows a summary of the deliverables defined in the inter-agency agreement

with ASPE.
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Objective Deliverable

1

Develop high-quality training data sets
for machine learning in detecting drug-
resistance tuberculosis in radiographs,
in collaboration with NIAID.

Training data with X-rays, CTs, clin-
ical data, socioeconomic information,
genomic data, and statistical meta in-
formation in common formats used
by the imaging and machine learning
community

2

Develop machine learning algorithms
that will be trained and tested on this
data for discriminating between drug-
resistant and drug-sensitive tuberculo-
sis. Evaluate algorithms using conven-
tional metrics.

Trained machine learning models for
five binary TB classification problems,
according to Task 2, including perfor-
mance evaluation:

i normal vs. abnormal
ii drug-sensitive vs. drug-resistant
iii MDR vs. XDR (and other resis-

tance type pairs)
iv drug-sensitive vs. drug-resistant,

with clinical data
v drug-sensitive vs. drug-resistant,

with genomic data

3

Disseminate resources (tools and train-
ing data) and lessons learned to stim-
ulate the application of these methods
to a wider array of use cases by PCOR
researchers.

i Publication of data, training mod-
els, and training scripts on TBPP
and/or other websites as agreed
with ASPE

ii 2 webinars
iii 2 presentations at conferences/-

workshops

4

Develop implementation guides detail-
ing each method used and the generic
aspects of the data each method lever-
ages, with detail sufficient to facilitate
its application to a wider array of use
cases.

Three publications will conclude the
project:

i Implementation guide available for
researchers in a conventional for-
mat, with information on training
and testing scripts, to be available
via TBPP

ii Scientific manuscript for submission
to a peer-reviewed journal on de-
tecting drug resistance with ma-
chine learning

iii 508 compliant final report for post-
ing on ONC and/or ASPE website.

Table 1: Objectives and Deliverables
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4 Background - Problems Addressed

This section describes the problems addressed by the project and how this will advance

the PCOR field, following the original statement of work. Specifically, it tells the

research questions that can now be answered due to the project.

4.1 Data Acquisition

At the start of the project, there was little data available about drug-resistant TB.

Although NIAID had already acquired X-rays and CTs for TB Portals in several coun-

tries [22], and the ImageCLEF 2017 and 2018 evaluation challenges had contributed

some data [13], this was insufficient to train machine classifiers for detecting and pre-

dicting TB drug resistance. Since TB drug resistance is a complex medical condition

requiring individual patient-centered treatment, many patient records are needed to

arrive at statistically meaningful results. In tight collaboration, NIAID (OCICB) and

NLM addressed this problem by significantly increasing the amount of data during

the project. The data contains radiographs and clinical, genomic, and socioeconomic

records. This makes this data unique and allows the training of deep learning networks.

To make the data public, the data needed to be de-identified, cleaned and saved

in standard formats, such as DICOM. Furthermore, the data needed to be organized

in a way suitable for machine learning. For example, the type of drug resistance,

patient age and sex, and temporal information in the case of longitudinal data needed

to be included. As important were data links connecting patient records with the

corresponding genome data of the pathogen, which will enable future PCOR research

across domains. Specifically, the data will help investigate what radiographic, clinical,

and genomic factors contribute to TB drug resistance, how they are related, and how

they affect recovery chances. More information on the mechanism and the general

data sharing and analysis, including radiographs and genomic data, can be found here:

https://jcm.asm.org/content/55/11/3267.

4.2 Machine Learning Classifiers

No reliable machine classifiers for TB drug resistance detection were available at the

start of the project. The project addressed this problem by a) carrying out machine

classification experiments on the newly acquired data and making the resulting models

publicly available and b) providing a software interface allowing users to train their

models on TBPP data or their data. Several classification tasks and PCOR questions

for detecting drug resistance were addressed in this project:
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• The project trained machine classifiers to detect manifestations of TB in radio-

graphs (TB vs. not-TB).

• Using the newly acquired TB Portals data, the project trained classifiers to dis-

criminate between drug-sensitive and drug-resistant TB in radiographs. This ad-

dresses the PCOR question of whether specific TB manifestations in a patient’s

lung indicate drug resistance, which is an open research problem.

• By training classifiers for MDR vs. XDR drug resistance, the project investigated

the possibility of predicting different types of drug resistance based on the TBPP

data, which is also an open research problem.

• The project used clinical and socioeconomic features, alone and in combination

with TBPP’s pictorial radiographs, to investigate if machine classifiers can predict

drug resistance for a patient based on this information.

• Another problem addressed was the potential existence of links between pheno-

type (radiographs) and genotype (pathogen genome), which is largely unknown.

The project tried to find connections and trained classifiers for drug resistance

prediction using radiographic and genomic features.

All statistical models produced for these classification tasks were systematically tested

based on standard performance metrics. The implemented machine classifiers provided

to the research community will allow PCOR researchers to measure the relative useful-

ness of socioeconomic, clinical, and genomic data for TB drug resistance prediction.

4.3 Dissemination of Results

To enable PCOR researchers to continue the research of this project toward a defi-

nite answer to the questions above, disseminating training data, trained models, and

lessons learned were deliverables of this project. While the training data has been

made available via TB Portals (https://tbportals.niaid.nih.gov), the software,

including programming interfaces, libraries, training algorithms, and trained models,

have been made available via GitHub (https://github.com/NLMLHC/NLM-PCOR-TB).

In addition, an implementation guide provides more information about the implemented

software methods used to develop the deliverables of this project, including the software

environment, which will encourage the application of these methods to TBPP data or

other PCOR data. PCOR researchers can use this as a starting point to modify the

software deliverables and apply them to other PCOR use cases, asking similar questions

and following the best practices identified through this work.
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Conference presentations and webinars were given to disseminate the results and

lessons learned from the work; see Section 6 for more information. The scientific results

of this project were summarized in several peer-reviewed publications for journals and

conference proceedings. They provide details about the algorithms used and their

performance evaluation; see Section 6 for a complete list of papers published during

this project.

5 Methodology

Machine learning was the primary method used in this project for detecting and pre-

dicting drug resistance. It can be considered a subfield of artificial intelligence (AI),

where a computer uses training data to develop statistical models that can be used

to classify unknown patterns. The training data comprises many samples showing the

patterns in all their variations so that training algorithms can learn the essential fea-

tures and make inferences on unseen patterns, classifying them. Machine learning has

seen considerable progress in the last decade, especially in developing convolutional

neural networks (CNNs) for image analysis and recognition. These networks specialize

in processing data with grid-like topologies, such as images [18]. This is also called deep

learning and includes analyzing biomedical images for computer-aided diagnosis. For

radiographs, for example, neural networks can detect manifestations of TB and perhaps

drug resistance, as investigated in this project. Neural networks could also translate

clinical patient data into drug resistance predictions. For computer-aided diagnosis,

performances approaching or even outperforming the performance of human experts

have been reported. However, large volumes of high-quality training data are critical

to training classifiers and achieving high performance. Reliable machine classifiers can

accelerate the discovery of novel disease-outcome correlations and inform the design

of prevention and treatment studies, which has the potential to speed up the research

life cycle and the application of evidence in clinical settings. High-quality training

data sets are extensive and varied, covering all the different real-world occurrences of

patterns. They are well-labeled and structured, use standard data models and com-

mon data elements annotated by domain experts, and combine previously unconnected

data resources that can be used to train algorithms to elucidate knowledge and extract

relevant data points for research.

The software to train deep learning networks for the TB drug resistance use case

has been made available as a deliverable of this project. This software allows PCOR

researchers to train statistical models to detect tuberculosis drug resistance, either on

the data made available for this project or on their data following the same format.
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Furthermore, using the software, researchers can easily import data, read the annotation

labels, train a neural network or another machine classifier, let the classifier infer a class

label, and evaluate the performance of the output. PCOR researchers can add their

non-public training data to the existing data in TBPP and train new models based

on larger training sets. Alternatively, they can directly apply the pre-trained models

developed in this PCOR project to classify unknown input patterns without retraining

the models. With only slight modifications, it would be possible to apply the software to

other use cases for other lung diseases or entirely different image domains, for example,

histopathology or retinal images. In summary, the project offers a machine learning

software platform for the PCOR community to research radiographs and clinical data,

with an emphasis on predicting TB drug resistance to determine the optimal treatment

of a TB patient.

6 Accomplishments by Final Deliverables

This section lists the project accomplishments according to the objectives described in

Section 1 and 3. It describes the most important research results and summarizes the

software functionality for each deliverable. Most of the software modules offer two main

functions, one for training and one for inference. The training function allows users to

use their data to train a model. The inference function can execute a pre-trained

model on TBPP data or a model that the user has trained on new data. For a more

detailed description of the research results and the lessons learned, readers are referred

to the research papers published during the project. A more extensive description of

each software module can be found in the implementation guide, a deliverable of this

project.

6.1 Training Data - Objective 1

A Data Use Agreement and a Memorandum of Understanding were signed between

NLM and NIAID. This gave access to the existing NIAID TBPP data to train machine

classifiers [22]. Under the leadership of NIAID, TBPP is designed to unite radiological,

genomic, clinical, laboratory, and socioeconomic/geographic data from prospective and

retrospective TB cases and their associated clinical samples and to freely share these

curated data, including powerful and user-friendly analytical tools, with researchers

and health care specialists throughout the world. This mission is accomplished through

(i) international collaboration with clinical research sites and academic research orga-

nizations in countries with a heavy burden of drug-resistant TB and (ii) the creation,
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support, expansion, and promotion of the multifactor repository of anonymized clinical

data from patients with drug-resistant forms of TB.

TBPP is still in the data acquisition phase and includes both data acquired before

and during this project. It should be noted that TBPP data differs in two main aspects

from other data sources. First, it only contains data for patients with TB. Second, it is a

much richer data source. For each patient, it includes clinical and socioeconomic infor-

mation (e.g., treatment regimens, outcome, education level, etc.), imaging studies with

manual and AI-generated labels (CXR and possibly CT), and finally, the pathogen’s

genomic information and the type of TB in terms of drug susceptibility (drug-sensitive

or specific type of drug-resistant TB (DR-TB) such as Mono DR, Poly DR, and XDR).

The PCOR project collected 4,947 frontal chest X-rays (CXR) and 178 CT images

with TB drug resistance information. Table 2 shows the number of patients from

whom CXRs or CTs have been collected each project year. This data has been added

to TB Portals, increasing the total data size to more than 6,000 patient records as of

November 2022. The data includes clinical data, radiographs, patient information, and

links to genomic information. It was the primary source of training data used in the

experiments. Before using it for the experiments, the data needed to be cleaned up;

for example, non-frontal chest X-rays and images of poor quality were removed. Lung

fields were extracted using image segmentation.

Access to TBPP data is managed. To access the data, users must sign a data

use agreement, describe their research project and agree not to distribute the data or

attempt to identify patients. Once approved, the data is available in two forms: (a)

download from a server using a dedicated protocol for the transfer of big data, which is

more appropriate for images (b) use of a RESTful API to retrieve the tabular data (all

data except images and genomic information). The former is updated quarterly and

the latter weekly.

For a more detailed overview of TBPP data sharing and usage examples, see:

https://datasharing.tbportals.niaid.nih.gov/.

CXR CT

2022 204(DS), 262(DR) 1(DS), 3(DR)
2021 955(DS), 1891(DR) 2(DS), 24(DR)
2020 527(DS), 1108(DR) 56(DS), 92(DR)

Total 1686(DS), 3261(DR) 59(DS), 119(DR)

Table 2: TBPP imaging data acquired during the project. The table shows the number
of patients with drug-sensitive (DS) and drug-resistant (DR) TB manifesting in either
a CXR or CT.
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6.2 Machine Learning Algorithms - Objective 2

For this project, several machine classifiers were trained for different classification prob-

lems related to drug resistance using TBPP data; see also Objective 2 in Table 1.

Specifically, classifiers were developed to discriminate between not-TB and TB cases

and between drug-resistant and drug-sensitive cases using CXRs from about a dozen

countries (Objective 2, Deliverable i, ii). The project also classified different types of

drug resistance and used clinical and genomic data as additional information (Objective

2, Deliverable iii, iv, v). The following subsections provide more details about these

classifiers.

6.2.1 TB vs. not TB

For CXR images, the project employed deep learning models to classify TB vs. not-TB

(Objective 2, Deliverable i). Using an Xception network and pre-trained weights from

ImageNet, the implementation of batch normalization and dropout methods avoided

overfitting. The training was based on a cross-entropy loss function in combination with

an Adam optimizer, using the publicly available Shenzhen and Montgomery County

CXR sets as training data.

Because the classification of TB vs. not-TB required CXRs with TB and CXRs with

no TB or with manifestations of other diseases for training, this classification problem

was not the project’s primary focus. TBPP is concerned exclusively with TB drug

resistance and, thus, with radiographs featuring manifestations of TB. Nevertheless,

the software provided as one of the deliverables allows users to apply the trained model

or to train new models for this classification problem. For TB detection in CT images,

please see the following publication [19].

6.2.2 Drug-sensitive vs drug-resistant

Several deep learning architectures were tested to discriminate between drug-sensitive

and drug-resistant TB in CXRs, including AlexNet, InceptionV3, DenseNet169, and

InceptionResNetV2 (Objective 2, Deliverable ii). Using 10-fold cross-validation and

image augmentation to balance the data, AlexNet provided the highest accuracy of 75%,

followed by InceptionV3 [18]. To visualize the results, GRAD-CAM heatmaps localized

the areas a trained network deemed significant to distinguish between drug-resistant

and drug-sensitive TB. The project also compared the abnormality distribution among

sextants, extracted from the clinical data and radiological features, with the information

extracted from the GRAD-CAM visualization to find correlations [17, 18].
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For CT images, nnUNet (a self-configuring algorithm for deep learning-based biomed-

ical image segmentation) detected lung regions on publicly available datasets, including

lung regions in CTs from TBPP [14]. A lung segmentation performance of 0.98 was

achieved, as measured by the Dice coefficient. Furthermore, the bounding boxes of these

lung regions served as input to the training stage for drug-resistant vs. drug-sensitive

TB classification in CTs, which resulted in roughly 60% AUC (area under the receiver

operating characteristic curve - ROC).

6.2.3 MDR vs XDR

The project addressed MDR vs. XDR drug resistance classification to investigate the

possibility of discriminating between both types with machine learning (Objective 2,

Deliverable iii). Using seven demographic and 25 radiological features, a Random Forest

Model (RF) was trained based on 592 MDR and 592 XDR cases from TBPP. The model

achieved an average accuracy of 63% and an AUC of 69%.

The extent to which this classification problem is solvable with the given data in

TB Portals remained unclear. Suppose MDR and XDR can be discriminated by com-

putational means on radiographs and clinical data; in that case, more data would likely

be needed to achieve a better classification performance.

6.2.4 Clinical data and radiological features

The relationship between lung nodules and drug resistance was a subject of investigation

(Objective 2, Deliverable iv). Several nodule features in the clinical data were used to

train a classifier that can discriminate between drug-resistant TB and drug-sensitive

TB. The following nodule features were used in particular: number of nodules <3mm,

number of nodules within 3-8mm, number of calcified or partially calcified nodules,

number of non-calcified nodules, and number of clustered nodules. Altogether, 26

radiological features consisting of 17 nodule/cavity-related features and nine other lung

abnormality features were used as the feature set in the experiments. After training a

machine classifier, a support vector machine (SVM), with these features, including age

and gender, the classifier achieved an average accuracy of 76% and an average AUC of

78% [26]. These results suggested that nodule features are possible indicators of drug

resistance.

The project also investigated the role of demographic features in distinguishing drug-

resistant TB from drug-sensitive TB [27]. In this study, seven demographic features were

used: gender, patient type (New, Relapse, or Failure), BMI, education, employment,

number of daily contacts, and number of children. For 2622 patients (1311 DS-TB +
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1311 DR-TB), a combination of demographic and radiological features performed better

than using only one feature type. The best performance was achieved by training a

Random Forest classifier using the demographic and 26 radiological features, which

provided an average accuracy of 75% and an average AUC of 83%. These results

suggested that demographic features are meaningful indicators of drug resistance.

Another study investigated the relationship between the number of sextants affected

by lesions and TB drug resistance. Pearson’s chi-squared test showed that two clinical

features and 22 radiological features are significantly associated with drug-resistant

TB. Ten-fold cross-validation using an SVM classifier achieved an average accuracy of

68.42% and an average AUC of 72.16% when combing three clinical features, twelve

nodule-related sextant features, and six cavity sextant features. Therefore, the study

suggested that the number of sextants affected by lesions could be a predictor of drug-

resistant TB. Features were more frequent in upper sextants than in lower sextants. For

some features, such as non-calcified nodules, clustered nodules, and multiple nodules,

the regions seemed to differ between drug-sensitive and drug-resistant patients, which

could be a subject of further research.

In another experiment, a decision tree model (Random Forest) was trained on 840

drug-sensitive and drug-resistant patients to compute a ranking for 27 features. Ac-

cording to this model, pleural effusion, huge nodules, and lung collapse are the most

critical features for detecting drug resistance.

For a clinical data analysis on 2237 patients (782 DS-TB + 1455 DR-TB), the

project confirmed that classifiers using a combination of clinical and radiological features

perform better than those using only one type of feature [26]. Data augmentation

achieved the best performance for a combination of features, with an average accuracy

of 72.34% and an average AUC of 78.42%.

Furthermore, the project analyzed risk factors for the recovery time of drug-sensitive

and drug-resistant patients based on a Cox proportional hazard model. The result

showed eight statistically significant factors, such as the number of very large lung

nodules and the type of drug resistance, among others.

6.2.5 Genomic data

The project used machine learning on radiological and genomic TBPP data to discrim-

inate between drug-sensitive and drug-resistant TB (Objective 2, Deliverable v). While

radiological data consisted of radiographs annotated by radiologists, genomic data com-

prised a detailed breakdown of the genomic composition of the pathogen. Several exper-

iments were performed for 4048 patient records, among which 2023 included genomic
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features, and 1163 had both radiological findings from CXRs and genomic features.

The first experiment investigated the performance of radiological and genomic fea-

tures for drug resistance prediction. Only one radiological feature (percent of pleural

effusion of involved hemithorax) was mildly correlated with one of the gene mutation

variants. Other radiological and genomic features were weakly correlated. Furthermore,

eight genomic features were strongly correlated with DR-TB. Seven genomic features

were mildly correlated with DR-TB. In contrast, radiological features were all weakly

correlated with DR-TB. Pearson’s chi-squared test showed that 14 out of 18 radiolog-

ical features and 29 out of 43 genomic features were statistically significant regarding

DR-TB vs. DS-TB (p < 0.05).

A Random Forest algorithm was used to classify DR-TB and DS-TB. The trained

classification model achieved an average accuracy of 97% when combining radiological

and genomic features or using genomic features alone. At the same time, the model’s

average accuracy based on radiological features alone was around 70%. This result

showed that radiological and genomic features could be used to predict DR, with the

genomic features alone or a combination of radiological and genomic features providing

the best performance.

In another experiment, pleural effusion was analyzed in more detail, as it is the only

radiological feature negatively correlated with one of the gene variants in the previous

experiment. Unfortunately, pleural effusion was not a good predictor of drug resistance.

Furthermore, machine learning was used to predict the period of a successful treat-

ment, again using both radiological and genomic features. Similar to prior experiments,

the connection between radiological/genomic features and treatment period (TP) was

investigated. TP correlated well with the genomic but poorly with the radiological

features. Pearson’s chi-squared test showed that TP depends on nine of 18 radiological

features and most gene variants. A Gradient Boosting regression model predicted the

first successful drug regimen length. This regression model had a mean absolute error

of 110 days using radiological and 93 days using both radiological and genomic features.

Because the treatment length could span up to three years, an error prediction of up

to three months encouraged future work.

For TBPP, the project found 29 drug combinations to treat DS-TB and 668 drug

combinations to treat DR-TB. Machine learning was used to predict the duration of the

first treatment period of a specific drug regimen. Specifically, the Gradient Boosting

regression model was trained on the top-3 most popular drug combinations. The most

popular drug cocktail in the TBPP data was Ethambutol, Isoniazid, Pyrazinamide, and

Rifampicin. For this drug combination, the regression model had a mean absolute error

of 34 days using radiological features, 36 days using genomic features, and 33 days using
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both features. The relative error was 17.7% using the radiological features, 19% using

the genomic features, and 17.6% using both feature sets. For the second most popular

drug combination, Ethambutol, Isoniazid, and Rifampicin, the genomic features did not

help improve the model prediction. The relative error was 8.1% using the radiological

features, 11.7% using the genomic features, and 11.4% using both feature sets. This

was attributed to the fact that most cases were DS-TB. The third most popular drug

regimen was Bedaquiline, Clofazimine, Cycloserine, Levofloxacin, and Linezolid, for

which the relative error was about 36% using the radiological features, 33% using the

genomic features, and 38% using both feature sets.

Finally, the first culture change period (FCCP) was predicted using both radiolog-

ical and genomic features. There was a weak correlation between FCCP and genomic

and radiological features. The radiological features and most of the mutations were

independent of FCCP (p > 0.05), indicating that this is a challenging problem that

needs further investigation.

6.3 Presentations and Publications

As part of the outreach activities, according to Objective 3 of the deliverables, an ”In-

ternational Workshop on Using Artificial Intelligence to Identify Multi-Drug Resistant

TB and AIDS-TB Co-infections in Radiographs” was organized in Shenzhen, China,

in October 2019. The project was presented in a talk titled ”Developing AI for drug

resistance detection in radiographs. Is it possible?”

The results of this project and the lessons learned were presented at conferences

and in journal papers. For example, at the 43rd Annual International Conference of

the IEEE Engineering in Medicine and Biology Society, a talk was given on ”Identifying

Drug-Resistant Tuberculosis in Chest Radiographs: Evaluation of CNN Architectures

and Training Strategies,” in which an AUC of 84% was reported for classifying drug-

resistant vs. drug-sensitive TB based on CXR images, using different augmentation

techniques, synthetic data, and other publicly available sources. The following lists all

papers published during the project; see the references at the end of this report.

• Karki M, Kantipudi K, Yang F, Yu H, Wang Y.X.J, Yaniv Z, Jaeger S. Gen-

eralization challenges in drug-resistant tuberculosis detection from chest X-rays.

MDPI Diagnostics, vol. 12, no. 1, pp. 188-210, 2022.

• Yang F, Yu H, Kantipudi K, Karki M, Kassim YM, Rosenthal A, Hurt DE, Yaniv

Z, Jaeger S. Differentiating between drug-sensitive and drug-resistant tuberculosis

with machine learning for clinical and radiological features. Quantitative Imaging
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in Medicine and Surgery, vol. 12, no. 1, pp. 675-687, 2022.

• Karki M, Kantipudi K, Yu H, Yang F, Kassim YM, Yaniv Z, Jaeger S. Identifying

drug-resistant tuberculosis in chest radiographs: Evaluation of CNN architectures

and training strategies. 43rd Annual International Conference of the IEEE Engi-

neering in Medicine and Biology Society (EMBC), pp. 2964-2967, 2021.

• Yang F, Yu H, Kantipudi K, Rosenthal A, Hurt DE, Yaniv Z, Jaeger S. Automated

drug-resistant TB screening: Importance of demographic features and radiolog-

ical findings in chest X-ray. 50th IEEE Applied Imagery Pattern Recognition

Workshop (AIPR), pp. 1-4, 2021.

• Ma L, Wang Y, Guo L, Zhang Y, Wang P, Pei X, Qian L, Jaeger S, Ke X, Yin

X, Lure F. Developing and verifying automatic detection of active pulmonary

tuberculosis from multi-slice spiral CT images based on deep learning. Journal of

X-Ray Science and Technology, vol. 28, no. 5, pp. 939-951, 2020.

• Zheng Q, Lu Y, Lure F, Jaeger S, Lu P. Clinical and radiological features of novel

coronavirus pneumonia. Journal of X-Ray Science and Technology, vol. 28, no.

3, pp. 391-404, 2020.

The project was part of a webinar on ”Balancing Access to Federal Data Sets with

Enhancing Privacy and Security,” which was organized by ASPE. Together with the

project collaborators at NIAID, the presentation described the anonymization process

of the TBPP data so that it can be used for research, addressing potential privacy

problems and their solutions.

7 Lessons Learned and Future Directions

This section discusses the lessons learned as a consequence of this project and proposes

directions for future research, following a more detailed presentation of the challenges

in [17].

7.1 Encountered Challenges and Solutions

During this project, extensive experiments have been conducted to discriminate between

DR-TB and DS-TB in radiographs, clinical patient records, and genomic pathogen data.

Many of these experiments have either established or pushed the current state-of-the-

art. The results suggest that detecting DR-TB and predicting treatment outcomes and
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times could be possible. Nevertheless, the early detection of DR-TB in chest radiographs

and clinical data remains a research subject.

For CXRs from TBPP, with image augmentation and the addition of synthetic

and publicly available images, the project achieved a high classification accuracy when

evaluating models on data from one source using cross-validation. However, a significant

performance degradation could be observed when evaluating trained models on unseen

data from a different source. The models did not generalize well on new data. This so-

called domain shift problem is a problem for many machine learning systems and is thus

a general AI problem. In [17], the project authors suggested a multi-task approach to

overcome this problem, but more research is needed to alleviate generalization problems.

Domain shift can be caused by differences in image acquisition and non-pathological

and non-anatomical aspects interfering with the information relevant to DR-TB. The

capability of an AI system to provide consistent performance across different hospitals

and countries is vital for DR-TB detection and computer-aided diagnosis as a whole.

Multiple publications have described attempts to utilize images or clinical data to

distinguish between DR-TB and DS-TB. Several studies have shown that radiological

findings in a CT or CXR could help differentiate between the two classes. A literature

review from 2018 [25] concluded that thick-walled multiple cavities are a valuable pre-

dictor for DR-TB, with reasonable specificity but low sensitivity. Another study [12]

compared 183 DR-TB cases and 183 DS-TB cases, concluding that there were substan-

tial differences in findings between the two classes regarding lesion size and morphology.

A slightly larger study [11], which compared 468 DR-TB and 223 DS-TB cases, con-

cluded that a combination of the number and size of consolidated nodules is a good

predictor for DR-TB. Furthermore, a small study in [7] used data from 144 patients

and found that the presence of multiple cavities is a good predictor for DR-TB. Then, a

much larger study [5] compared 516 DR-TB and 1030 DS-TB cases, obtaining an AUC

of 0.83 using a regression model. This study observed that the co-existence of multiple

findings was indicative of DR-TB. Finally, our more recent work compared 1455 DR-TB

and 782 DS-TB cases, using two clinical features and 23 radiological findings [26]. An

SVM classifier was used to distinguish between DR-TB and DS-TB with an AUC of

0.78. One limitation of these approaches is the reliance on a radiologist’s reading.

Several fully automated solutions were presented in the ImageCLEF 2017 and 2018

evaluation challenges [13]. These challenges included differentiating between DR-TB

and DS-TB using thoracic CT images. Among the proposed approaches, Gentili et

al. [8] reformatted the CT images to the coronal plane and used a pre-trained ResNet50

CNN for classification. For the same challenge, Ishay et al. [15] used an ensemble of 3D

CNNs, Cid et al. [6] used a 3D texture-based graph model with SVMs, and Allaouzi et
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al. [2] replaced the softmax function of a 3D CNN architecture with an SVM. All entries

had limited success, resulting in AUCs of about 0.6. After two editions, the organizers

discontinued the TB drug resistance challenge, concluding that it was impossible to

solve based only on the image.

While the observations made by the radiologists seemed encouraging, the challenges

did not yield the desired results, suggesting that the sub-optimal performance may be

due to the small number of images made available for training. However, increasing the

number of CTs for this task is not trivial considering that the use of CT imaging for

DS-TB cases is uncommon, with the standard imaging modality being CXR. For CXR

images, the authors in [24] used a customized CNN architecture to classify DR-TB and

DS-TB in 2973 images from TBPP. They achieved a classification performance of 66%,

which improved to 67% when follow-up images were also included. Several authors of

this report have previously proposed fully automated methods for CXRs, as described

in [16, 18]. In [16], using 135 CXRs from a single source and a shallow neural network

resulted in an AUC of 0.66. In [18], a more extensive set was used, containing 3642

images from multiple sources. Using an InceptionV3 deep neural network pre-trained on

ImageNet, an AUC of 0.85 was obtained for this set, which is the current state-of-the-

art performance achieved with TBPP data. It is a significant improvement compared

to other approaches. However, even though 10-fold cross-validation was performed, the

ability of the trained network to classify CXRs from unseen domains was not evaluated.

The common weakness of most current automated methods is that they have not

been evaluated on a separate data source. As different imaging technologies and de-

vices produce images with different features and qualities, models must be robust to

these differences. An underlying assumption of most machine learning algorithms is

that training and test data are independent and identically distributed. The learned

parameters will not perform well if the two distributions are different. That is, the

trained model will not generalize well on unseen data. While CXR imaging is a low-

cost modality in widespread use, the image feature variations in the acquired images

are significant [20, 4], bringing into question the utility of any proposed method that is

not evaluated on its generalization capability. Sathitratanacheewin et al. [23] observed

that a model for CXR-based TB diagnosis performed well with 0.85 AUC when tested

on images within their intramural dataset but observed a significant performance de-

terioration of the model when tested on extramural images, yielding an AUC of only

0.7. Harris et al. [10] reported that 80% of published works using CXR for TB diag-

nosis either used the same databases for training and testing or did not comment on

the databases they used for testing. For domain shift, when the distributions between

training and test sets differ, it has been shown that formulating training as a multi-task
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approach can reduce performance degradation [21]. In addition to domain shift, the

generalization capability of deep learning methods can also deteriorate when they learn

irrelevant features. Deep learning algorithms can pick up features in the training set

that are arbitrarily correlated with the disease and, thus, are entirely unrelated. For

example, these features can stem from the imaging devices’ different characteristics or

clinical practices implemented, such as patient positioning [28, 3, 1]. If a model has

incorporated such features, it will not generalize well for different imaging devices or

clinical workflows, which are irrelevant to disease diagnosis. In [17], authors of this

report explored various strategies to improve the generalization of models for the clas-

sification of CXRs as DR-TB or DS-TB using different normalization and attention

mechanisms, both explicit (segmentation-based) and implicit (multi-task based).

7.2 Ongoing Governance

The training data collected and the machine learning tools developed during this

project have been made publicly available. As stated above, the data is available via

TBPP (https://tbportals.niaid.nih.gov) [22], and the software is downloadable

via GitHub (https://github.com/NLMLHC/NLM-PCOR-TB). The TBPP data repository

and the GitHub software repository will receive regular updates in the foreseeable fu-

ture. TBPP will continue to be serviced and maintained by NIAID. Its patient records

were collected with the primary focus on acquiring drug-resistant cases, especially cases

that reflect the specific research interest in the country of origin. As a result, there is

an imbalance between drug-resistant and drug-sensitive cases, which does not neces-

sarily reflect the prevalence of TB from either class in a contributing country. More

data will be added to TBPP over time to a) increase the overall volume of TBPP and

b) reduce these imbalances. This will increase the importance of TBPP, which is al-

ready the most significant source of data regarding TB drug resistance. Adding more

data will make TBPP more useful for machine learning and, thus, more interesting for

PCOR researchers. Depending on projects and research results, NLM will update the

software in the GitHub repository accordingly. This could mean updating the models

to incorporate new data added to TBPP or rewriting current methods to reflect re-

cent developments in machine learning. If desired, the GitHub repository could also be

expanded with code from the PCOR community or other open-source developers.

7.3 Additional Clinical Areas

The methods developed in this PCOR project are generic because they are not re-

stricted to TB or drug resistance detection. Several underlying inference engines are
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based on CNNs, which have established themselves as successful tools for image anal-

ysis. Theoretically, they can detect various abnormalities or diseases in radiographs

or biomedical images in general. For example, in light of the COVID-19 crisis, the

project investigated how machine learning may help detect this disease in radiographs

(CXRs and CTs). Techniques similar to methods in this PCOR project can potentially

detect COVID-19 and increase the specificity of COVID-19 diagnosis. Specifically, lung

features were identified that could be seen by an AI tool, as published in a survey

paper on clinical and radiological manifestations of coronavirus pneumonia [29]. Fea-

tures of other lung abnormalities and diseases could be targeted similarly. In addition,

computer-aided prediction of the treatment outcome and treatment length for other

diseases can be accomplished with the software tools developed in this project. In this

sense, the project has enhanced PCOR data infrastructure, providing a basis for future

PCOR activities beyond TB drug resistance, and offering a platform for future research

in AI generalizability and explainability.

8 Conclusion

Deliverables and resources of this project have been made available via existing infras-

tructure that researchers can access, such as GitHub and NIAID’s openly-accessible

TBPP for TB data sharing and analysis. Evidence generated from the application of

the developed AI methods supports the TBPP platform by setting the foundation for

researchers to develop scientific approaches so healthcare providers can match patients

to the best treatments based on their specific health conditions and profiles.

The hope is that the results of this project will encourage those building upon this

project’s deliverables to advance these methods for the TB drug resistance use case,

develop similar use cases in other areas, and make their research resources publicly

available. Subsequent users of this project’s tools, resources, and generated knowledge

could include a larger array of PCOR researchers and healthcare stakeholders. For

example, as regulatory agencies develop national policies that increasingly consider

patient-generated information in the approval of drugs and devices, evidence generated

from the application of machine learning to patient-centered outcomes research will be

beneficial. Healthcare systems innovators and clinicians can use the tools developed

and lessons learned to produce findings that could impact clinical practice.
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Identifying Drug-Resistant Tuberculosis in Chest Radiographs:
Evaluation of CNN Architectures and Training Strategies

Manohar Karki1, Karthik Kantipudi2, Hang Yu1, Feng Yang1,
Yasmin M. Kassim1, Ziv Yaniv2 and Stefan Jaeger1

Abstract— Tuberculosis (TB) is a serious infectious disease
that mainly affects the lungs. Drug resistance to the disease
makes it more challenging to control. Early diagnosis of
drug resistance can help with decision making resulting in
appropriate and successful treatment. Chest X-rays (CXRs)
have been pivotal to identifying tuberculosis and are widely
available. In this work, we utilize CXRs to distinguish between
drug-resistant and drug-sensitive tuberculosis. We incorporate
Convolutional Neural Network (CNN) based models to
discriminate the two types of TB, and employ standard and
deep learning based data augmentation methods to improve
the classification. Using labeled data from NIAID TB Portals
and additional non-labeled sources, we were able to achieve
an Area Under the ROC Curve (AUC) of up to 85% using a
pretrained InceptionV3 network.

I. INTRODUCTION

Tuberculosis (TB) is a global disease caused by the bac-
terium Mycobacterium tuberculosis, which is spread through
the air. According to the World Health Organization, in
2019 an estimated 10 million people were infected with TB
and about 1.4 million died from the disease [1]. Efforts to
control TB have been hindered by the rise of drug-resistant
strains, where in 2019 about half a million people developed
rifampicin-resistant TB out of which 78% were multidrug-
resistant [1]. Early detection of drug resistance enables more
specific drug treatment, reduces the period of infectiousness
and disease spread in addition to improving outcomes [2].

Current diagnostic methods for identifying drug-resistant
TB (DR-TB) infections include conventional culture growth
over several weeks and rapid molecular testing [3]. These
procedures are not feasible globally, especially for countries
unable to scale up their testing capacities. An automated
computational approach that utilizes widely available tech-
nology is thus desirable. Chest X-rays (CXRs) are exten-
sively used in detection of tuberculosis, and thus offer a
potentially natural avenue for discriminating between DR-
TB and drug-sensitive TB (DS-TB).

In this work, we evaluate multiple CNN architectures and
training strategies with the aim of differentiating between
DR-TB and DS-TB. We evaluate both pre-trained CNNs as
simple N-layer custom CNNs. In terms of training strate-
gies, we evaluate the use of different data augmentation
approaches, augmenting the data statically beforehand or

1 Lister Hill National Center for Biomedical Communications, U.S.
National Library of Medicine, Bethesda, MD 20894 USA

2 Office of Cyber Infrastructure and Computational Biology, National
Institute of Allergy and Infectious Diseases, Bethesda, MD 20894 USA

dynamically during training. Along with that, we generate
synthesized images for DR-TB and DS-TB from the original
images using Generative Adversarial Networks (GANs). We
utilize a unique TB dataset provided by the US National
Institute of Allergy and Infectious Diseases [4]. This patient
based dataset includes clinical, genomic, and radiological
data (CXRs and CT), but most importantly, it includes
the results of drug susceptibility testing. Finally, we utilize
several publicly available TB image datasets with unknown
drug susceptibility to further enhance our classifier training.

II. PREVIOUS WORK

Computational identification and classification of lung
diseases in medical images has been greatly facilitated by
advancements in deep learning [5]. In the context of TB,
usage of CXRs to classify an image as TB/not-TB has been
described in multiple publications. Even simpler architec-
tures such as AlexNet and GoogleNet, used with around 1000
training images, have shown good performance, exceeding
95% accuracy on some datasets [6]. The specific task of
detecting TB in CXRs has seen great success, with multiple
commercial products available, and a recent study reporting
an area under the receiver operating characteristic curve of
0.92 or greater, when evaluated on unseen data [7].

Very few works have dealt with identifying the type of TB,
DR-TB or DS-TB, from images. As part of the ImageCLEF
2017 and 2018 challenges, this question was posed using
CT images. In 2017/2018 participants of the challenge were
provided with a training set comprised of 230/259 training
CTs and 223/236 testing CTs. After running the challenge
for two years, the organizers said that “After two editions
we concluded that the MDR (Multi-Drug Resistant) subtask
was not possible based only on the image.” 1 It should be
noted that the size of the training dataset was very small, and
likely adversely affected deep learning based approaches.

In a different study [8], our group had moderate success
in differentiating between DR-TB and DS-TB using CXRs,
achieving an AUC of 0.66 utilizing hand-crafted shape and
texture features. In clinical research, several publications
describe using imaging (CXR or CT) to identify clinical
findings that potentially differentiate between DR-TB and
DS-TB. In [9], the authors found the DR-TB class to have
more large lesions whereas the DS-TB class had more
medium and small lesions. In [10], the authors found that
the DR-TB class was characterized by having thick-walled

1https://www.imageclef.org/2019/medical/tuberculosis/
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cavities. Finally, in [11], the authors found that presence of
multiple cavities was a predictor of DR-TB.

Based on our initial results, and the more recent clinical
observations, we believe CXRs can potentially be used for
differentiating DR-TB from DS-TB using a deep learning
approach, which is described in the following sections.

III. METHODS

To discriminate between DR-TB and DS-TB, this work
collects and processes CXR images from different sources,
selects models trained with deep learning based approaches,
and uses training strategies to improve classification perfor-
mance. The CXRs used in this work are from the following
sources: TB Portals [4], Montogomery County and Shenzhen
chest X-ray sets [12], and the TBX11K large scale tuberculo-
sis dataset [13]. Table I lists the number of samples for each
set. The TB Portals dataset is the only one which contains
results of drug susceptibility testing, indicating if the image
is DR-TB or DS-TB. For all other datasets, we assume the
images are DS-TB as that is significantly more common. To
ensure that our evaluation is valid, we only use images from
the TB Portals dataset in our testing.

A. Data preprocessing

1) Data Selection: The TB portals dataset contains im-
ages from hospitals in 16 countries. Because of this, there
are variations in the quality of images. We discarded images
that are non-pulmonary, from lateral views, or non-grayscale.

Because an early-stage distinction of drug sensitivity or
resistance is desirable, only images from a patient’s first visit
were selected for this analysis. Further, to give equal weight
to all patients, a single image was used per patient even when
multiple images were acquired on that visit.

2) Cropping of lung regions from CXRs: CXR images
often include significantly sized regions that are outside
the lungs, such as shoulders and neck. These regions are
not relevant for the classification and in fact can be a
hindrance in developing accurate models. Cropping a tight
region around the lungs and removing unnecessary regions
also allows for a more consistent size of the lungs across
multiple images once they are rescaled. We therefore use a
deep learning approach to crop the original CXRs to the
lung region. During the cropping process, the CXRs are
blurred by Gaussian smoothing with a standard deviation
of 0.5 to reduce the high frequency signal components.
Each smoothed image is resampled to a fixed dimension
(256x256), before normalizing the intensities to zero mean
and unit standard deviation. The CXRs are passed through
a U-Net based segmentation model [14]. The resulting lung
masks are used to compute a bounding box to crop the lung
region from the original CXRs. The segmentation model was
trained on two datasets [12], [15] yielding an IoU of 0.971
and 0.956, respectively. Subsequently, the original images are
cropped using the bounding box coordinates, downsampled,
and renormalized. Figure 1 illustrates this process.

Fig. 1: Preprocessing pipeline for CXRs

B. Network Architectures

For the classification task, we evaluate several standard
CNN architectures as well as three custom CNNs. The
standard networks include: AlexNet [16], DenseNet [17],
InceptionV3 [18], ResNet [19], and Xception [20]. For each
of the standard networks, we removed the dense layers after
the final convolutional layer and added new dense layers.
Table II shows the number of parameters for each of the
networks.

C. Data Augmentation

Most deep CNNs require a large amount of good quality
data for the models to generalize well. As the number of
available samples for each class is relatively small, we use
two augmentation approaches:

1) Image transformations: The following transformations
are applied to the original images: rotation (±10o), trans-
lation (±5 pixels), blurring (N (0.0, 1.0)), and histogram
equalization. We intentionally apply small parameter values
for these methods as they replicate the relatively small
variations in X-ray images compared to images from other
domains. We evaluate the usage of static augmentation, one
time application of the transformations to the entire dataset
before training starts, and dynamic augmentation, where
original images are modified on the fly during batch training.

2) Synthetic Image Generation: Aside from image trans-
formations, we synthesize images from both categories to
increase the number of samples. We use the progressive
growing of generative adversarial networks (PG-GANs) [21].
PG-GANs were chosen as they have been shown to generate
relatively stable, quality, and variant images. For generating
synthetic images for each category during each growth
phase of [4×4, 8×8, . . . , 128×128], batch sizes and epochs

Sources DR-TB DS-TB

TB Portals 1821 878
Montgomery County [12]* 0 58

Shenzhen [12]* 0 336
TBX11K [13]* 0 549

Synthetic (using GAN) 1000 1000

Total 2821 2821

TABLE I: Number of images from each source. * Patients
from [12] and [13] are assumed to be drug sensitive.
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of [128, 64, 64, 32, 32, 16] and [100, 250, 250, 250, 250] were
used respectively. The final outputs are up-sampled to the
input size of the classifying network.

IV. EXPERIMENTS

We evaluate model capabilities to distinguish between DR-
TB and DS-TB on a patient-level basis. In all experiments,
we use 10-fold cross validation.

We start by evaluating multiple models on the TB portals
dataset using non-augmented training. We then evaluate the
effects of various augmentation strategies on the best models.
Finally, we add TB images from external sources, labeling
all of them as DS-TB, to the best model from the last step.

A. Model Selection

The pretrained network architectures were designed to
address multi-class classification tasks. While we only deal
with two classes (DR-TB and DS-TB), the size of the avail-
able dataset is much smaller in comparison. We therefore
initially evaluate multiple standard architectures and several
custom CNNs using the TB Portals dataset.

B. Effects of Augmentation

Once we identify the more promising architectures, we
explore the effects of dynamic and static augmentation
strategies as well as utilizing synthetically generated images
in the training stage. For this experiment, we only select
the best performing pretrained-networks (InceptionV3 and
Xception) and the best performing custom network. We also
evaluate the effect of increasing the amount of statically
augmented data on the balanced dataset created in the
previous experiment.

C. Including Additional Data

As shown in Table I, the number of DR-TB images
in the TB portals dataset is significantly higher than the
number of DS-TB images. In an effort to utilize images from
all available patients in the imbalanced TB portals dataset,
additional TB images from other sources were also included.
We label these images as DS-TB, as this is the prevalent type
of TB. The previous augmentation strategies were combined
with the additional data to see if they influence the overall
AUC performance. Note that these images are only used for
training purposes as there is no drug susceptibility testing
associated with them.

V. RESULTS

In our network architecture comparison, without any aug-
mentation, pretrained InceptionV3 and Xception networks
had the best performance, as can be seen in Table II.
These two networks, and several custom CNNs (6-layer, 10-
layer, 12-layer), were also trained with random initialization.
Among the custom networks, the 6-layer CNN had the best
area under the ROC curve (AUC) with 0.74±.04 compared to
the rest of the custom networks. When randomly initialized,
the performance of InceptionV3 and Xception deteriorated.

Different augmentation methods and addition of synthetic
images did not yield better performance for these networks,

Architecture Parameters
(in millions) AUC

Pretrained Networks

AlexNet [16] 5.7 0.79 (± .02)
DenseNet121 [17] 7.2 0.79 (± .02)
DenseNet201 [17] 18.6 0.80 (± .02)
InceptionV3 [18] 22.3 0.81 (± .03)
InceptionResNetV2 [18] 54.7 0.77 (± .05)
ResNet50 [19] 24.1 0.80 (± .03)
ResNet152 [19] 58.7 0.77 (± .03)
Xception [20] 21.3 0.81 (± .02)

Random initialization

6-layer CNN 3.0 0.74 (± .04)
10-layer CNN 8.6 0.70 (± .03)
12-layer CNN 9.1 0.65 (± .04)
InceptionV3 [18] 22.3 0.76 (± .03)
Xception [20] 21.3 0.76 (± .03)

TABLE II: Mean AUC (Area Under ROC Curve) of 10-fold
cross validation results when various pretrained and custom
networks are tested on TB Portals dataset

as shown in Table III. Performance did not scale with the
increase in augmented data. When number of samples was
increased to 3X and 4X original samples size by static
augmentation, performance decreased. Interestingly, the per-
formance of the custom 6-layer network improved with the
same training strategy. We chose to continue our evaluation
using the InceptionV3 network as its performance remained
the most consistent with these augmentation strategies.

Figure 2 summarizes the performance evaluation of Incep-
tionV3, using various datasets and augmentation strategies.
We see that static augmentation has an overall positive effect
on model performance compared to the dynamic augmen-
tation strategy. We also see that the addition of images
from other sources to the training set combined with static
augmentation lead to the best AUC overall performance of
85%.

Although the inclusion of both the synthetic data and data
from additional sources improves performance when using
dynamic augmentation, it did not have an effect when using
static augmentation. The variance in performance is slightly
better when both synthetic and additional data are included.

Finally, to inspire confidence in the predictions of our
network, we utilize GradCAM heatmaps [22] to visualize its
focus. Figure 3 shows two heatmaps for correctly predicted
.

Network
Architecture Dynamic Static Synthetic

2X 3X 4X

InceptionV3
(pretrained)

0.80
(±.03)

0.81
(±.03)

0.80
(±.02)

0.79
(±.02)

0.81
(±.02)

Xception
(pretrained)

0.80
(±.03)

0.80
(±.03)

0.77
(±.04)

0.79
(±.03)

0.81
(±.03)

6-layer CNN 0.76
(±.03)

0.76
(±.02)

0.74
(±.02)

0.76
(±.03)

0.75
(±.03)

TABLE III: AUC with dynamic and static augmentation and
with augmentation using GAN generated images.
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0.79
(±.03)

0.85
(±.05)

0.85
(±.04)

0.78
(±.03)

0.80
(±.05)

0.82
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Fig. 2: Mean AUC performances of the InceptionV3 net-
work with static or dynamic augmentation and including a)
synthetic images, b) images from [12] and [13] (referred in
figure as additional sources) c) both. These additional images
with static augmentation provided the best performance.

Fig. 3: GradCAM heatmaps superimposed on the original
images, Classified as DR-TB (left image) and DS-TB (right
image) due to likelihood values of .99 and .05 respectively.

VI. CONCLUSIONS
This paper presents an evaluation of models for discrim-

inating between drug-resistant and drug-sensitive TB in the
TB portals dataset, using augmentation strategies and other
publicly available data. With a 10-fold cross validation, we
achieve the best AUC performance of 85%. Even with-
out augmentation and additional data, but with pretrained
weights, we achieve a 81% AUC performance with Incep-
tionV3 and Xception networks. GradCAM heatmaps affirm
that the models learn from relevant areas from the CXRs
during the training process. Despite discouraging earlier
work in the literature, our work has shown that discriminating
between DR-TB and DS-TB can be possible in CXRs for a
sufficiently large training set.
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Background: Tuberculosis (TB) drug resistance is a worldwide public health problem that threatens 
progress made in TB care and control. Early detection of drug resistance is important for disease control, 
with discrimination between drug-resistant TB (DR-TB) and drug-sensitive TB (DS-TB) still being an 
open problem. The objective of this work is to investigate the relevance of readily available clinical data and 
data derived from chest X-rays (CXRs) in DR-TB prediction and to investigate the possibility of applying 
machine learning techniques to selected clinical and radiological features for discrimination between DR-TB 
and DS-TB. We hypothesize that the number of sextants affected by abnormalities such as nodule, cavity, 
collapse and infiltrate may serve as a radiological feature for DR-TB identification, and that both clinical and 
radiological features are important factors for machine classification of DR-TB and DS-TB.
Methods: We use data from the NIAID TB Portals program (https://tbportals.niaid.nih.gov), 1,455 DR-
TB cases and 782 DS-TB cases from 11 countries. We first select three clinical features and 26 radiological 
features from the dataset. Then, we perform Pearson’s chi-squared test to analyze the significance of the 
selected clinical and radiological features. Finally, we train machine classifiers based on different features and 
evaluate their ability to differentiate between DR-TB and DS-TB. 
Results: Pearson’s chi-squared test shows that two clinical features and 23 radiological features are 
statistically significant regarding DR-TB vs. DS-TB. A ten-fold cross-validation using a support vector 
machine shows that automatic discrimination between DR-TB and DS-TB achieves an average accuracy of 
72.34% and an average AUC value of 78.42%, when combing all 25 statistically significant features. 
Conclusions: Our study suggests that the number of affected lung sextants can be used for predicting 
DR-TB, and that automatic discrimination between DR-TB and DS-TB is possible, with a combination of 
clinical features and radiological features providing the best performance.

Keywords: Differential diagnosis; tuberculosis (TB); drug-resistance (DR); clinical features; radiological features; 

machine learning
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Introduction 

Tuberculosis (TB) drug resistance is a global public health 
concern since it threatens the progress made in TB care and 
control (1). In 2019, there were an estimated 10 million new 
TB cases; approximately half a million cases are resistant 
to rifampicin, of which 78% are multidrug-resistant TB 
(MDR-TB) (2). MDR-TB is a type of TB that is resistant 
to at least two first-line anti-TB drugs: isoniazid and 
rifampicin. Drug-resistant TB is a growing public health 
concern since it requires more complex treatment than 
drug-sensitive TB and incurs more costs. In 2019, it was 
estimated that globally 3.3% of new TB cases and 17.7% of 
previously treated TB cases are MDR-TB (2). 

Early identification of drug resistance enables patient-
specific drug treatment, which reduces the period of 
infectiousness and disease spread in addition to improving 
outcomes. However, discrimination between drug-
resistant TB (DR-TB) and drug-sensitive cases (DS-TB) 
using readily available clinical information and images, 
preferably during the first visit, is still an open problem. 
Currently, there are two types of TB drug susceptibility 
tests: conventional culture-based phenotypic testing and 
molecular testing. The former involves looking at the 
bacteria behavior, which requires a well-equipped laboratory 
facility and may take several weeks to obtain the results (3). 
The latter involves looking at genetic mutations, which is 
fast but expensive and may produce inconclusive results (4). 
Therefore, it is desirable to predict the suspicion of DR-
TB automatically from radiological findings and clinical 
information in patient medical records. 

 Inspired by the work in (5), we hypothesize that 
the number of affected sextants may serve as important 
radiological features for DR-TB identification, and that 
both clinical and radiological features are important factors 
for machine classification between DR-TB and DS-TB. 

Previous work

There is evidence that certain clinical data and radiological 
findings may enable differentiation between DR-TB and 
DS-TB. Faustini et al. (6) conducted a review of twenty-
nine studies before 2006 and reported that prior treatment 

for TB is the strongest determinant of MDR-TB in Europe. 
Tembo and Malangu (7) collected 2,568 medical records in 
Botswana and found that previous treatment and positive 
sputum smear microscopy are associated with the prevalence 
of MDR-TB or rifampicin-resistant TB (RR-TB). Mdivani 
et al. (8) reported three risk factors for MDR-TB based 
on analysis of 1,422 patients from Georgia: retreatment 
case, history of injection drug use and female gender. 
O’Donnell et al. (9) found that women admitted to hospital 
in KwaZulu-Natal, South Africa with drug-resistant TB 
are 38% more likely than men to have XDR-TB based on 
an analysis of 4,514 patients. Shen et al. (10) conducted an 
analysis of 8419 patients from Shanghai, China, and stated 
that patients aged 30–59 years are more likely to be DR-TB 
in previously treated cases. Lv et al. (11) reported from 3,552 
patients in Dalian, China, that previously treated patients 
and older age are more likely to have MDR-TB. Icksan 
et al. (12) compared chest X-ray (CXR) findings from 183 
MDR-TB and 183 DS-TB cases in Indonesia and reported 
that the MDR-TB group has more large-size lesions 
while the DS-TB group has more small- and medium-size 
lesions. Wáng et al. (13) performed a review on available 
articles before 2018 for radiological signs of MDR-TB and 
found that thick-walled multiple cavities (particularly with 
count ≥3 and size ≥30 mm) present the most promising 
radiological sign for MDR-TB with good specificity but at 
the cost of low sensitivity. Huang et al. (5) reported from 
468 DR-TB cases and 223 DS-TB cases that a combination 
of consolidated nodule number and size can be used to 
predict the probability of MDR-TB. Flores-Treviño  
et al. (14) found from 144 patients in Mexico that multiple 
cavities is a predictor for DR-TB. 

Based on these past studies, we hypothesized that the 
number of affected sextants may serve as a useful feature 
when applying machine learning techniques to the 
discrimination of DR-TB and DS-TB. To date, very few 
works have been concerned with discriminating between DR-
TB and DS-TB in an automated manner. Kovalev et al. (15)  
apply different machine learning methods to features 
extracted from CXR images or CT images or both. They 
achieve an accuracy of 73% with an AUC value of 72%, a 
sensitivity of 82% and a specificity of 58% when combining 
the features from both X-ray and CT images. The accuracy 
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for CXR images alone or CT images alone falls to 62% 
and 65%, respectively. Our previous work (16) applied both 
traditional machine-learning methods and deep learning 
networks to CXR images, achieving an AUC value around 
66% and an accuracy around 60%.

Methods

Data collection

We use a dataset of 2,237 patients, which includes de-
identified clinical data and CXR images publicly available 
from the NIAID TB Portals program (17). Each patient 
record is manually annotated with clinical information 
and radiological findings based on CXR images. Clinical 
information includes age of onset, gender, patient type 
(new, relapse or failure), type of sample (pulmonary or 
extrapulmonary), BMI, diagnosis, prescription drugs, 
laboratory tests, treatment period, treatment status and 
outcome. A new case refers to a patient who has never been 
treated for TB or has taken anti-TB drugs for less than one 
month. A relapse case refers to a patient who has previously 
been treated for TB, was declared cured or completed 
treatment at the end of the most recent course of treatment, 
and is now diagnosed with a recurrent episode of TB (either 
a true relapse or a new episode of TB caused by reinfection). 
A failure case represents a patient who has previously been 
treated for TB and whose treatment failed at the end of the 
most recent course of treatment (17). Radiological findings 

include chest radiography patterns such as the number and 
location of affected sextants, the presence of mediastinal 
lymphadenopathy, presence of other non-TB abnormalities, 
the overall percentage of abnormal volume, and the pleural 
effusion percentage of the hemithorax involved. Due to 
financial constraints and the size of the TB portals CXR 
dataset, radiological features are obtained using a single 
experienced radiologist-reading per image. The whole 
dataset was annotated by multiple radiologists from the 
countries contributing data to the program. Due to the 
large number of radiologists participating in this study, 
their annotations are not biased toward a single radiologist. 
The 2,237 patients include 782 DS-TB and 1,455 DR-TB 
patients, acquired from 11 countries. Distribution of the 
origin is listed in Table 1. The type of drug susceptibility 
was determined by sputum cultured drug resistance testing 
and/or molecular testing, specifically Bactec, Hain (FL-
LPA), SL-LPA, GeneXpert, and Lowenstein -Jensen testing 
(17,18). Data usage is exempt from local institutional review 
board review as it is publicly available from the TB portals 
program. The study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013). The TB 
portals program participants are responsible for ensuring 
compliance with their countries’ laws, regulations, and 
ethics considerations (17).

Statistical analysis

In this work, we hypothesize that the number of affected 
sextants may serve as an important radiological feature 
for DR-TB identification, and that both clinical and 
radiological features are relevant for machine classification 
of DR-TB and DS-TB. Lung sextants are defined by 
dividing each lung into three equal sections from apex to 
base, as shown in Figure 1. A sextant is said to be affected if 
either nodules, cavities, collapses, or infiltrates are present. 
We utilize three clinical features and 26 radiological 
features, as listed in Table 2. Age in this paper means age 
of onset. To gain insight into the statistical significance of 
extracted features with different types of resistance (DR-TB 
or DS-TB), Pearson’s chi-squared test is applied. A feature 
with P<0.05 is considered statistically significant.

Machine classification of drug-sensitive and drug-
resistant TB

Based on the clinical and radiological features selected by 
Chi-squared tests, we train a machine learning classifier, 

Table 1 Origin of the TB cases analyzed in this work

Country
No. (%) of cases

DS-TB DR-TB Total

Azerbaijan 0 (0) 7 (0.31) 7 (0.31)

Belarus 113 (5.05) 461 (20.61) 574 (25.66)

Georgia 364 (16.27) 340 (15.20) 704 (31.47)

India 151 (6.75) 49 (2.19) 200 (8.94)

Kazakhstan 35 (1.56) 223 (9.97) 258 (11.53)

Kyrgyzstan 0 (0) 110 (4.92) 110 (4.92)

Moldova 1 (0.04) 26 (1.16) 27 (1.21)

Republic of the Congo 0 (0) 1 (0.04) 1 (0.04)

Romania 4 (0.18) 87 (3.89) 91 (4.07)

South Africa 94 (4.20) 3 (0.13) 97 (4.34)

Ukraine 20 (0.89) 148 (6.62) 168 (7.51)
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a Support Vector Machine (SVM) (19), to discriminate 
between DS-TB and DR-TB. We illustrate the pipeline 
of our machine classification in Figure 2. To compare the 
contributions of different features for classifying DR-TB vs. 
DS-TB, we train the SVM classifier using different feature 
combinations.

Our dataset includes 782 DS-TB cases and 1,455 DR-TB 
cases, and is thus biased toward DR-TB. Machine learning 
classifiers are sensitive to the proportions of different 
classes in the training set. If ignored, data imbalance will 
bias predictions in favor of the majority class, leading to 

inaccurate results. To balance the dataset, several approaches 
can be applied: down-sampling of the majority class, over-
sampling of the minority class, or synthetic minority over-
sampling (SMOTE) type techniques (20-23). Data down-
sampling involves randomly removing samples from the 
majority class, which might discard useful information. Data 
over-sampling is a process of randomly duplicating samples 
of the minority class, which will not lose any information 
from the original dataset, but is prone to over-fitting to 
the training data. The SMOTE technique is an improved 
over-sampling method that synthesizes new samples from 

Figure 1 Definition of lung sextants in our study.

Upper right Upper left

Middle right Middle left

Lower right
Lower left

Table 2 Summary of clinical features and radiological features extracted from medical records

Type and number of features Description

Three clinical features Age; gender; patient type (new case, relapse, or failure)

Radiological features

12 nodule features Number of sextants affected by (I) either small nodules (<3 mm), (II) medium nodules (3–8 mm), (III) large 
nodules (8–30 mm), (IV) huge nodules (≥30 mm), (V) multiple nodules, (VI) calcified or partially calcified 
nodules, (VII) non-calcified nodules, (VIII) clustered nodules, (IX) low ground glass density active fresh 
nodules, (X) medium density stabilized fibrotic nodules, (XI) high density calcified typically sequellae  
nodules, or (XII) any kind of nodules

Six cavity features Number of sextants affected by either (I) small cavities (<10 mm), (II) medium cavities (10–25 mm), (III) 
large cavities (>25 mm), (IV) multi-sextant cavities, (V) visible multiple cavities; or (VI) any kind of cavities

Eight other lung abnormality 
features

(I) Overall percentage of abnormal volume; (II) pleural effusion percentage of involved hemithorax; (III) 
number of sextants affected by collapse; (IV) number of sextants affected by low ground glass density 
infiltrates; (V) number of sextants affected by medium density infiltrates; (VI) number of sextants affected 
by high density infiltrates; (VII) presence of mediastinal lymphadenopathy; (VIII) presence of other non-TB 
abnormalities

Age in our work means age of onset.
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the minority class. It often outperforms simple/random 
over-sampling (21-23). In our study, we use the classic 
SMOTE method (20) for data over-sampling in imbalanced 
binary dataset classification. We evaluate the classification 
performance based on ten-fold cross validation: 782 DS-TB 
cases and 1,455 DR-TB cases are first divided into ten folds, 
each of which includes 78 (or 79) DS-TB cases and 145 (or 
146) DS-TB cases. To balance the data between DS-TB 
and DR-TB cases, the 78 (or 79) DS-TB cases in each fold 
are oversampled to 145 (or 146) cases using the SMOTE 
method, or the 145 (or 146) DR-TB cases in each fold are 
down-sampled to 78 (or 79). Then, nine folds are used for 
training data and the remaining fold is used as testing data 
to calculate the accuracy. The process is repeated ten times, 
with each fold serving once as testing data, and the average 
performance of the ten rounds is reported as the final 
evaluation result. Figure 3 visually illustrates the ten-fold 
cross validation scheme on balanced data obtained via the 
SMOTE oversampling method.

Results

Figure 4 illustrates the distribution of the three clinical 
features we use (patient type, age and gender) for the 

1,455 DR-TB and 782 DS-TB cases analyzed in this work. 
We find visible differences for patient type distributions 
between DR-TB and DS-TB: For DR-TB cases, 62.96% 
are in the New category, 23.71% are in the Relapse category, 
and 13.33% are in the Failure category. However, for DS-
TB cases, 90.41% are in the New category, 9.34% are in 
the Relapse category, and only 0.26% are in the Failure 
category. Age categories follow those defined in (24), with 
a slightly finer resolution. Clear differences are observed 
among age groups between DR-TB and DS-TB. Both DS-
TB and DR-TB patients are more likely to be less than  
65 years old, whereas the frequency of DR-TB is higher 
in the age groups of 35–44 and 45–54. No clear difference 
is observed for the gender distribution between DR-TB 
and DS-TB. Differences observed in feature distributions 
are consistent with the statistical significance analysis using 
Pearson’s chi-squared test, which is performed based on 
the null hypothesis that the clinical feature categories are 
independent from being drug-sensitive or drug-resistant. 
Patient type (P<0.001) and age (P<0.01) show a statistically 
significant association with resistance type. More details 
about the distribution and chi-squared test results of the 
three clinical features can be found in Table S1.

Figure 5 shows the distribution of 12 nodule features. 

Figure 2 Workflow of the proposed machine classification between DR-TB and DS-TB. DS-TB, drug-sensitive tuberculosis; DR-TB, 
drug-resistant tuberculosis.

Figure 3 Ten-fold cross validation based on balanced data with oversampled DS-TB cases. DS-TB, drug-sensitive tuberculosis.

Data acquisition Machine classifier
Drug-sensitive

Drug-resistant
Feature selection

146 DS

146 DR

145 DS

145 DR

145 DS

145 DR

146 DS

146 DR

146 DS

146 DR

145 DS

145 DR

146 DS

146 DR

145 DS

145 DR

145 DS

145 DR

146 DS

146 DR

146 DS

146 DR

145 DS

145 DR

145 DS

145 DR

146 DS

146 DR

146 DS

146 DR

145 DS

145 DR

146 DS

146 DR

145 DS

145 DR

145 DS

145 DR

146 DS

146 DR

146 DS

146 DR

145 DS

145 DR

145 DS

145 DR

146 DS

146 DR

146 DS

146 DR

145 DS

145 DR

146 DS

146 DR

145 DS

145 DR

145 DS

145 DR

146 DS

146 DR

146 DS

146 DR

145 DS

145 DR

145 DS

145 DR

146 DS

146 DR

146 DS

146 DR

145 DS

145 DR

146 DS

146 DR

145 DS

145 DR

145 DS

145 DR

146 DS

146 DR

• • •

1st round

2nd round

3rd round

10th round

Testing fold
Training folds



680 Yang et al. Differentiating between drug-sensitive and drug-resistant TB

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(1):675-687 | https://dx.doi.org/10.21037/qims-21-290

Figure 4 Distributions of three clinical features for 782 DS-TB patients (blue) and 1,455 DR-TB patients (orange). Shown are the 
percentage of cases for each feature present in a given category (e.g., the blue bars for patient type show that 90.41% of DS-TB patients are 
in the New category, 9.34% in the Relapse category, and 0.26% in the Failure category). DS-TB, drug-sensitive tuberculosis; DR-TB, drug-
resistant tuberculosis.

Figure 5 Distributions of 12 nodule related features for 782 DS-TB patients (blue) and 1,455 DR-TB patients (orange). Shown are the 
percentages of cases for each feature present in a given category (e.g., the blue bars in the category Small nodules show that 48.08% of DS-
TB cases have no sextant affected by small nodules, 23.79% have only one sextant affected by small nodules, and 28.13% have more than 
one sextant affected by small nodules). DS-TB, drug-sensitive tuberculosis; DR-TB, drug-resistant tuberculosis.
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Figure 6 Distributions of six cavity-related features for 782 DS-TB patients (blue) and 1,455 DR-TB patients (orange). Shown are the 
percentages of cases for each feature present in a given category (e.g., the blue bars in the category Small cavities show that 80.31% of DS-
TB cases have no sextant affected by small cavities, 15.60% have only one sextant affected by small cavities, and 4.09% have more than one 
sextant affected by small cavities). DS-TB, drug-sensitive tuberculosis; DR-TB, drug-resistant tuberculosis.

multiple medium-density nodules and multiple high-density 
nodules are more likely to occur in DR-TB. Pearson’s chi-
squared tests on the 12 nodule features show that all the 
nodule features are statistically significant regarding DR-TB 
vs. DS-TB, except for the number of sextants with calcified 
nodules (P>0.05). Figure 6 depicts the distribution of six 
cavity features. We find that cavities occur in approximately 
40% of DR-TB patients and in approximately 29% of DS-
TB patients. Multiple small cavities, multiple medium 
cavities, and large cavities tend to occur in DR-TB patients. 
Pearson’s chi-squared tests indicate that all six cavity 
features are statistically significant regarding DR-TB vs. 
DS-TB. Figure 7 shows the distribution of eight other lung 
abnormality features. We observed that multiple sextants 
with collapses, multiple sextants with low GGD infiltrates, 
high-density infiltrates, more than 50% abnormal volume, 
and mediastinal lymphadenopathy are more likely to occur 
in DR-TB. Chi-squared test results show that, the number 
of sextants affected by medium density infiltrates (P>0.05) 
and the presence of other non-TB abnormalities (P>0.05), 
are not statistically significant with respect to discriminating 
between DR-TB and DS-TB. Differences visible in the 
feature distributions in Figures 4-7 are consistent with 
Pearson’s chi-squared tests. More details about distributions 
and chi-squared test results of the 26 radiological features 

can be found in Tables S2,S3.
To invest igate the possibi l i ty  of  automatical ly 

differentiating between DR-TB and DS-TB and to 
evaluate the importance of specific features, we train SVM 
machine classifiers using eight different combinations of 
features listed in Table 2: (I) three clinical features; (II) 12 
nodule features; (III) six cavity features; (IV) 12 nodule 
features plus six cavity features; (V) three clinical features 
plus 12 nodule features plus six cavity features; (VI) all 26 
radiological features; and (VII) 25 significant clinical and 
radiological features. Tables 3,4 show the results for machine 
classification of DR-TB cases vs. DS-TB cases using data 
down-sampling (Table 3) and data augmentation (Table 4) 
for data balancing, respectively. Comparing the results in 
Tables 3,4, we find that (I) classifiers with data augmentation 
achieve better results; (II) classifiers using only clinical 
features obtain an accuracy around 61%, with very low 
sensitivity; (III) compared to classifiers using only clinical 
features, classifiers using radiological features achieve a 
higher sensitivity at the cost of much lower specificity; (IV) 
classifiers using a combination of clinical and radiological 
features achieve a better performance than those using any 
of them alone; (V) the classifier using the 25 statistically 
significant features with SMOTE data augmentation 
achieves the best performance, with an average accuracy 
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Table 3 Ten-fold cross validation on balanced dataset with data down-sampling between DS-TB (782 cases) and DR-TB (782 cases)

Training features Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) AUC (%)

3 clinical features 60.22±3.05 40.04±7.54 84.40±4.84 72.33±5.57 60.77±4.95

12 nodule features 64.38±4.26 71.99±6.81 56.77±4.83 62.46±3.65 67.18±4.58

6 cavity features 55.62±3.08 30.55±5.70 80.69±5.60 61.69±7.51 55.03±3.29

12 nodule + 6 cavity features 64.32±4.82 71.99±6.66 56.64±5.98 62.43±4.25 67.38±4.96

3 clinical + 12 nodule + 6 cavity features 66.63±4.53 66.12±6.02 67.14±5.35 66.85±4.45 70.94±4.68

26 radiological features 66.44±4.87 76.47±6.12 56.40±5.50 63.70±3.97 71.13±4.68

3 clinical + 26 radiological features 68.22±4.77 73.01±5.06 63.43±6.85 66.78±4.61 74.05±5.84

25 significant features 68.29±3.40 75.70±5.49 60.87±5.91 66.04±3.38 73.60±4.79

Twenty-six radiological features include 12 nodule features, six cavity features and eight other lung abnormality features. Twenty-five  
significant features are obtained by excluding the four non-significant features from the 29 features. The best performance in each column 
is marked in italic.

of 72.34% and an average AUC value of 78.42%. The 25 
significant features are obtained by excluding the four non-
significant features (i.e., gender, number of sextans with 
calcified nodules, number of sextants with medium density 
infiltrates, and presence of other non-TB abnormalities) 
from the 29 features (three clinical features and 26 
radiological features). The ROC curve for SVM-based 
machine classification using the 25 significant features is 

shown in Figure 8. More details of our trained SVM model 
can be found in Table S4.

Discussion

Limitation of the study

The current study has some limitations. First, we did not 

Figure 7 Distributions of eight other lung abnormality features for 782 DS-TB patients (blue) and 1,455 DR-TB patients (orange). Shown 
are the percentages of cases for each feature present in a given category (e.g., the blue bars in the category No. of sextants with collapses show 
that 92.71% of DS-TB cases have no sextant affected by collapse, 5.37% have only one sextant affected by collapse, and 1.92% have more 
than one sextant affected by collapse). DS-TB, drug-sensitive tuberculosis; DR-TB, drug-resistant tuberculosis.
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Table 4 Ten-fold cross validation on balanced dataset with SMOTE data augmentation between DS-TB (1,455 cases) and DR-TB (1,455 cases)

Training features Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) AUC (%)

3 clinical features 61.89±3.31 38.43±5.27 85.35±7.11 73.63±9.26 64.44±3.07

12 nodule features 64.94±3.56 72.71±3.20 57.17±4.96 63.00±3.39 68.79±3.64

6 cavity features 56.77±2.43 34.02±3.34 79.53±5.64 63.02±6.29 56.60±3.76

12 nodule + 6 cavity features 65.33±4.03 70.38±3.64 60.28±6.42 64.08±4.16 68.76±4.42

3 clinical + 12 nodule + 6 cavity features 67.28±3.30 70.44±3.12 64.13±6.77 66.47±3.83 73.14±2.98

26 radiological features 67.28±5.35 84.13±2.81 56.95±13.34 67.40±7.46 72.25±6.24

3 clinical + 26 radiological features 70.99±3.18 74.36±2.84 67.63±7.36 69.98±4.42 77.56±3.72

25 significant features 72.34±2.65 75.33±3.36 69.35±6.29 71.30±3.63 78.42±2.63

Twenty-six radiological features include 12 nodule features, six cavity features and eight other lung abnormality features. Twenty-five  
significant features are obtained by excluding the four non-significant features from the 29 features. The best performance in each column 
is marked in italic.

use radiological features from chest CT images, since 
many of the existing records do not include annotated 
CT radiological findings. Second, distribution bias 
is present in the source of both DR-TB and DS-TB. 
This work includes 2,237 patients from 11 countries. 
However, about 97% of all drug-sensitive cases are from 
five countries (Georgia, Belarus, India, South Africa, and 
Kazakhstan) and about 81% of all drug-resistant cases 
are from four countries (Belarus, Georgia, Kazakhstan 

and Ukraine). That is, our machine classifier learns drug-
sensitive and drug-resistant features primarily from 
six countries, and the classification performance will 
decrease when we use it to identify DR-TB from other 
countries or when we perform a country-level evaluation. 
Third, DR-TB and DS-TB cases are imbalanced. We 
used SMOTE data augmentation techniques to balance 
the dataset; it would be better to have a truly balanced 
dataset for both the statistical significance analysis and 
machine classifier training. We are now working to 
increase the sample size of DR-TB and DS-TB cases 
to obtain a balanced data set with more uniformly 
distributed countries of origin. Fourth, our best machine 
learning model based on 25 significant features requires 
radiological findings reported by a radiologist, which 
limits the full automation of our machine learning 
model. Our next step will be to automatically detect such 
radiological features from radiographs based on deep 
learning methods.

Roles of patient type, age, and gender

In our study, the strongest predictor of DR-TB is patient 
type (New, Relapse or Failure). This is consistent with 
previous studies in Europe, Botswana, and Georgia (6-8).  
The treatment history is a well-known risk factor for the 
development of DR-TB. The WHO Global Report on 
Surveillance on MDR-TB and XDR-TB (25) stated that 
TB cases with a history of previous TB treatment are 

Figure 8 ROC curve of SVM classifier based on 25 significant 
features with data over-sampling and 10-fold cross validation. 
ROC, receiver operating characteristic; SVM, Support Vector 
Machine; AUC, area under the curve.
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significantly associated with DR-TB. Such a predictor can 
be used in early screening of DR-TB cases, especially in 
resource-limited clinical settings. For example, a relapsed 
patient would indicate that drug susceptibility testing is 
recommended at treatment start.

The association between DR-TB and age is not well 
established in the previous reports since different studies 
use different cut-off points for age groups. The European 
MDR-TB analysis (6) indicated that MDR-TB patients are 
more likely to be younger than 65 years, while the report 
on MDR-TB in Shanghai, China (10) stated that the age 
group of 30–59 years is associated with MDR-TB. In our 
data, age also showed a significant association with DR-TB. 
However, we found both that DR-TB and DS-TB are more 
likely to happen in age groups less than 65 years, and that 
the frequency of DR-TB is higher than DS-TB in the age 
groups of 35–44 and 45–54. 

Tuberculosis is more common in males (26-28). In (6) 
it was reported that male gender is a risk factor for MDR-
TB cases in Western Europe, but not in Eastern Europe. 
Contrary to that observation, it was found in Georgia, that 
female gender is significantly associated with MDR-TB 
(8,9). The authors in (8) assumed that this association is 
related to the fact that the majority of health care workers 
are females in Georgia. In our study, we did not find a 
significant association between gender and DR-TB. We 
hypothesize that gender is likely a regional risk factor for 
DR-TB, but does not present a general association in the 
TB data from 11 countries used in this work.

Roles of radiological features

Previous works (29-31) have revealed that active TB is 
likely to affect the upper lung regions exhibiting cavities, 
consolidations, and nodules, and to affect unilateral lung 
regions exhibiting pleural effusions. However, based on a 
review paper from 2018 (13) and our literature search in 
PubMed on Feb 4, 2021, only a small number of reports 
have mentioned the importance of lesion types and 
their locations in the development of DR-TB. Both the 
systematic review of radiological signs for MDR-TB before 
2018 (13) and the report on MDR-TB in Mexico (14)  
found that multiple cavities is a promising sign for 
identifying MDR-TB. This radiological feature may offer 
good specificity at the cost of low sensitivity (13). Our work 

confirms that there is a significant association between DR-
TB and multiple cavities (P<0.001), and also quantitatively 
demonstrates that a SVM classifier using cavity lesions 
can predict DR-TB with an average specificity of 80%, at 
the cost of an average sensitivity of 34%. It was reported 
that MDR-TB patients are more likely to have large-size 
lesions, and DS-TB patients are more likely to have small- 
or medium-size lesions (12). Our study confirms that large 
nodules and large cavities are more common in DR-TB. 
In addition, we found that multiple nodules and multiple 
cavities are more common in DR-TB, which confirms the 
analysis in (5,13).

In our study, we also found that DR-TB patients are 
more likely to have more abnormalities in all the six lung 
sextants. Figure 9 shows the abnormality distribution in the 
six lung sextants for DR-TB and DS-TB patients, using 
an abnormality occurrence index (AOI) that is calculated 
by dividing the sum of abnormalities of all patients in a 
given group for a given sextant by the number of patients 
in this group and sextant. A higher index indicates a higher 
possibility of abnormality occurrence in that sextant. 
In our future work, we will investigate the possibility 
of incorporating abnormality location into features for 
automated identification of DR-TB.

Conclusions

In this paper, we investigated the possibility of using the 
number of affected sextants for drug resistance prediction and 
the possibility of applying machine learning to discriminate 
between drug-resistant TB and drug-sensitive TB by 
incorporating both clinical and radiological features. We 
found that, clinical features can predict DR-TB cases with 
an accuracy of around 61%, with a relatively low sensitivity, 
while radiological features based on the number of affected 
sextants can predict DR-TB cases with an accuracy of around 
67%, with low specificity. The combination of clinical 
and radiological features improves these results. For the 
combined features, our machine classifier achieves an average 
accuracy of 72.34% and an average AUC value of 78.42%. 
Our study suggests that the number of affected sextants can 
be used for identifying drug-resistant TB, and that automatic 
discrimination between drug-resistant TB and drug-
sensitive TB is possible by utilizing both clinical features and 
radiological features.
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Figure 9 Abnormality distribution for 782 DS-TB patients (blue) and 1,455 DR-TB patients (orange). Shown are the abnormality 
occurrence indices (AOI) in each lung sextant (upper left, upper right, middle left, middle right, lower left and lower right). Taking DS-
TB patients for example, the abnormality occurrence index in a given sextant is calculated by dividing the number of abnormalities in this 
sextant for all DS-TB patients by the number of DS-TB patients. A higher index indicates a higher possibility of abnormality occurrence in 
this sextant. DS-TB, drug-sensitive tuberculosis; DR-TB, drug-resistant tuberculosis.
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Abstract— Tuberculosis (TB) is a global disease caused by the 

bacillus Mycobacterium tuberculosis. In recent years, great 

progress has been made in care and control of drug-sensitive TB, 

whereas drug-resistant TB continues to be a worldwide public 

health problem that takes a heavy toll on both patients and the 

health care system. Early detection of drug resistance during a 

patient’s first visit is very important because it enables 

appropriate drug treatment and thus reduces the period of 

infectiousness. However, discrimination between drug-resistant 

TB (DR-TB) and drug-sensitive TB (DS-TB) using imaging and 

readily available demographic data is still an open problem. In this 

paper, we investigate the possibility of automatic discrimination 

between DR-TB and DS-TB with demographic data and 

radiological findings from chest X-rays (CXRs) using machine 

learning techniques as well as the importance of such features for 

classifier training. We use a dataset of 1311 DR-TB cases and 1311 

DS-TB cases from 10 countries, collected from the NIAID TB 

Portals program (https://tbportals.niaid.nih.gov). We first 

perform a two-step preprocessing, which consists of feature 

quantitation and missing data imputation. Seven demographic 

features and 25 radiological features are selected from the dataset. 

Then, we train a random forest (RF) model to evaluate the ability 

to differentiate between DR-TB and DS-TB. An importance index 

calculated from the RF model is used to analyze the feature 

importance with respect to the discrimination task. The 

importance index from the RF model shows that the top ten 

important factors for discriminating between DR-TB and DS-TB 

are: number of daily contacts, BMI, patient type, education, 

medium density infiltrate, medium density stabilized fibrotic 

nodules, low ground glass density infiltrate, pleural effusion 

percentage of hemithorax involved, multiple nodules, small 

nodules. Ten-fold cross-validation using the RF model shows that 

automatic discrimination between DR-TB and DS-TB achieves an 

average accuracy of 75% and an average AUC value of 83%, when 

using the top ten features. Our study suggests that automatic 

discrimination between DR-TB and DS-TB with demographic and 

radiological features is possible.  

Keywords—Tuberculosis (TB), drug resistance, random forest, 

differentiated diagnosis; demographic features; radiological 

findings 

I. INTRODUCTION 

Tuberculosis (TB), caused by the bacillus Mycobacterium 
tuberculosis, is a serious worldwide health issue with  an 
estimated 10 million people infected and 1.5 million deaths each 
year [1]. In recent years, great progress has been made in care 
and control of drug sensitive TB [2], whereas drug resistant TB 
continues to be a worldwide public health problem [3]. In 2019, 
there were an estimated 10 million TB cases; approximately half 
a million cases are resistant to rifampicin, of which 78% are 
multidrug-resistant TB (MDR-TB) [1]. Drug-resistant TB is a 
growing public health concern since it requires more complex 
treatment than drug- sensitive TB and incurs more costs. Early 
detection of drug resistance is very important, as it helps with 
decision making, enables appropriate drug treatment, and 
reduces the period of infectiousness. However, discrimination 
between drug-resistant TB (DR-TB) and drug-sensitive TB (DS-
TB) using imaging and readily available demographic data is 
still an open problem. 

Previous works have shown evidence that certain clinical 
features can potentially aid in identification of DR-TB, such as 
prior treatment [4]–[8], positive sputum smear microscopy [5], 
history of drug injection [6], gender [6], [9], and age [7], [8]. 
Few works have dealt with radiological findings from chest 
imaging to identify the type of TB, DR-TB or DS-TB. Icksan et 
al. [10] reported that the MDR-TB group are more likely to have 
large-size lesions than DS-TB group. Wang et al. [11] found that 
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thick-walled multiple cavities (particularly with count ≥3 and 

size ≥30mm) present the most promising radiological sign for 

MDR-TB with good specificity but at the cost of low sensitivity. 
Huang et al. [12] reported that consolidated nodule number and 
size can be used to predict the probability of MDR-TB. Flores-
Trevino et al. [13] found that multiple cavities is a promising 
predictor for DR-TB. Our previous work [14] found that the 
number of sextants with abnormalities is useful for 
discriminating between DR-TB and DS-TB. So far, very few 
works have been concerned with discriminating between DR-
TB and DS-TB in an automated manner. [15]–[17] applied 
machine learning methods or deep learning methods on chest 
images to extract features for identifying DR-TB and DS-TB 
achieving AUC values of 72%, 66% and 85%, respectively. 

In this work, we focus on demographic information and 
radiologist reported findings from patient records. We 
investigate the possibility of automatic discrimination between 
DR-TB and DS-TB with demographic and radiological features 
using machine learning techniques as well as evaluating the 
importance of such features in classifier training. 

II. METHODS 

A. Data collection 

We use a dataset of 2622 patients, which includes de-
identified clinical data and chest X-ray images publicly 
available from the NIAID TB Portals program [18]. Each patient 
record is manually annotated with clinical information and 
radiological findings using the chest X-ray images. Clinical 
information includes demographic features such as age of onset, 
gender, patient type (New, Relapse or Failure), BMI, country of 
origin, education, employment, number of daily contacts, 
number of children, and other information such as type of 
sample (pulmonary or extrapulmonary), prescription drugs, 
laboratory tests, treatment period, treatment status and outcome. 
A new case refers to a patient who has never been treated for TB 
or has taken anti-TB drugs for less than one month. A relapse 
case refers to a patient who has previously been treated for TB, 
was declared cured or completed treatment at the end of the most 
recent course of treatment, and is now diagnosed with a 
recurrent episode of TB (either a true relapse or a new episode 
of TB caused by reinfection). A failure case represents a patient 
who has previously been treated for TB and whose treatment 
failed at the end of the most recent course of treatment [18]. 
Radiological findings include chest radiography patterns such as 
nodules, cavities, infiltrates and collapses, the presence of 
mediastinal lymphadenopathy, presence of other non-TB 
abnormalities, the overall percentage of abnormal volume, and 
the pleural effusion percentage of the hemithorax involved. Due 
to financial constraints and the size of the TB portals CXR 
dataset, radiological features are obtained using a single 
experienced radiologist-reading per image. The whole dataset 
was annotated by multiple radiologists from the countries 
contributing data to the program. Consequentially, the 
radiological annotations are not biased towards a single 
radiologist. The 2622 patients include 1311 DS-TB and 1311 
DR-TB patients, acquired from 10 countries.  

B. Feature preprocessing  

We perform a two-step preprocessing for demographic and 
radiological features. It consists of feature quantitation and 
missing data imputation. Feature quantitation indicates 
converting text features into numeric features. Missing data for 
a demographic feature is replaced by the mean value of other 
non-missing values under the same feature, while missing data 
for a radiological feature is assigned a special group number. For 
example, the radiological feature under the category Overall 
Percentage of Abnormal Volume will be assigned four values 
after feature quantitation and missing data imputation: 1 (0), 2 
(<50%), 3 (>50%) and 4 (missing data). 

Seven demographic features and 25 radiological features are 
selected by removing those whose missing data is more than 
40% and by removing the country of origin from demographic 
features. Since almost 80% patients comes from five countries 
(Belarus, Georgia, India, Ukraine, and Kazakhstan), training on 
the country of origin may result in biased classification. 

C. Random forest classifier 

Based on the selected demographic and radiological 
features, we train a machine learning classifier, a Random Forest 
(RF) model [19], to discriminate between DS-TB and DR-TB. 
We illustrate the pipeline of our machine classification in Fig. 1. 
To compare the contributions of different features for 
classifying DR-TB vs DS-TB, we train the RF classifiers using 
different feature combinations. 

 

Data 

acquisition

Feature 

preprocessing
Feature 
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RF classifier

DS-TB
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Fig. 1. Pipeline of the RF-model-based classification beween DR-TB and DS-

TB. 

D. Importance measure 

Each tree in a RF model is built from a random sample of the 
data, and not all observations are used to construct a specific 
tree. The observations that are not used to construct a tree are 
called out-of-bag (OOB) observations of this tree. In a RF 
model, each tree is built from a different sample of the original 
data, so each observation is “out-of-bag” for some of the trees. 

Assuming that our RF model includes M decision trees 
H={h1, h2, …, hM}. The importance index of a given predictor 
�� is calculated using the following four steps. 

Step 1: Use the decision tree hm to predict its OOB 
observations. We refer th input matrix as XOOB (feature matrix), 

and output matrix as Ym, then the prediction error ���1  can be 
calculated as the mean square error (MSE) between the 
predicted values Ym and real values Y: 

 ���1 = �	
� (� − )�.   (1) 

Step 2: Permute values for the feature �� (the ith column of 
the feature matrix) and use decision tree hm to predict the OOB 

observations. Then, the prediction error ���2  can be calculated 
as:  
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  ���2 = �	
� (′� − )�.  (2) 

Step 3: The importance index of predictor ��  on decision 
tree hm is calculated as: MSEm = Err2-Err1. 

Step 4: The importance index of predictor �� o the RF model 
is given by:  

 � =
�

�
∑ ����.                   (3) 

� > 0  means ��  is important since changing its order 

makes the error larger; � = 0  indicates that the order of �� is 
not important since the MSE does not change; � < 0 suggests 
that the variable can have a detrimental impact on the 
classification since changing its order makes the error smaller 
(substituting the feature with noise is better than the original 
feature; hence, the feature is worse than noise). 

III. EXPERIMENTAL RESULTS 

Figure 1 shows the importance index calculated using Eq. 
(3) on seven demographic and 25 radiological features. We see 
that the top ten important factors for classifying DR-TB and DS-
TB are: number of daily contacts, BMI, patient type, education, 
medium density infiltrate, medium density stabilized fibrotic 
nodules, low ground glass density infiltrate, pleural effusion 
percentage of hemithorax involved, multiple nodules, small 
nodules. 

 

Fig. 2. Importance index of random forest model for the seven demographic 

features and 25 radiological features. Predictors: 1 - 'number of daily contacts', 

2 - 'bmi', 3 -  'patient type', 4 - 'education', 5 - 'employment, 6 - 'pleural effusion 
percentage of hemithorax  involved', 7 - 'low GGD active fresh nodules', 8 - 

'non-calcified nodules', 9 -  'medium density stabalized fibroticn odules', 10 - 

'infiltrate_medium density', 11 - 'medium nodules',12 - 'low GGD infiltrate', 13 
- 'medium cavities', 14 - 'small nodules', 15 - 'clustered nodules', 16 - 'calcified 

or partially calcified nodules', 17 - 'small cavities', 18 - 'high density calcified 

typically sequella nodules', 19 - 'visible multiple cavities', 20 - 'multiple 
nodules', 21 - 'collapse', 22 - 'huge nodules', 23 - 'high density infiltrate', 24 - 

'overall percentage of abnormal volume', 25 - 'large nodules', 26 - 'age of onset', 

27 - 'large cavities', 28 - 'large cavity belonging to a multisextant cavity', 29 - 
'bilateral pleural effusion', 30 - other non TB abnormalities', 31 - 'gender', 32 - 

'mediastinal lymphadenopathy'. GGD indicates ground glass density. 

To investigate the possibility of automatically differentiating 
between DR-TB and DS-TB and to evaluate the contribution of 

specific features, we trained RF models using the following 
combinations: 1) seven demographic features, 2) 25 radiological 
features, 3) 32 demographic and radiological features, and 4) top 
10 important features. The results in Table 1 show that 1) 
demographic features have more influence on the RF model than 
radiological features; 2) the RF classifiers using top 10 features 
and using 32 features achieve very close performance, with an 
average AUC value of 83% and an average accuracy of 75%. 
Figure 2 shows the ROC curves for RF-based classifier using the 
top 10 features. 

 

Table 1 RF classifier performance with ten-fold cross validation. 

RF model 

features 

Performance 

AUC Accuracy Sensitivity Specificity Precision 

7 demog. 
features 

81.09% 
±2.52% 

72.72% 
±1.88% 

76.05% 
±4.13% 

71.39% 
±2.22% 

72.67% 
±1.48% 

6 demog. 
without 
patient type 

77.11% 
±2.47% 

72.16% 
±2.78% 

77.33% 
±4.11% 

66.59% 
±3.07% 

69.94% 
±2.41% 

25 radiol. 
features 

64.89% 
±3.81% 

60.79% 
±3.36% 

68.65% 
±3.68% 

52.94% 
±5.10% 

59.39% 
±3.07% 

32 features 
82.86%

±3.49% 

75.03% 
±3.05% 

78.33% 

±5.25% 

69.72% 
±4.40% 

72.20% 
±3.09% 

Top 10 

features 

82.55%

±2.64% 

75.17% 

±3.36% 

77.58% 

±4.36% 

72.77% 

±4.23% 

74.04% 

±3.76% 

Note: demog. indicates demographic, radiol. indicates radiological. 

 

Fig. 3. ROC curves for ten-fold cross validation using random forest classifier 

based on the top 10 features. 

IV. DISCUSSION AND CONCLUSION 

In this paper, we investigated the importance of 
demographic and radiological features in discrimination 
between DS-TB and DR-TB and the possibility applying 
machine learning to discrimination between DR-TB and DS-TB 
by incorporating both features.  

We select balanced DR-TB and DS-TB cases to avoid the 
bias of unbalanced dataset on machine classifier training and to 
avoid the unpredictable effects of synthetic data from 
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augmentation methods. It should be noticed that about 80% of 
the patients come from five countries (Belarus, Georgia, India, 
Ukraine, and Kazakhstan). That is, our machine classifier learns 
drug-sensitive and drug-resistant features primarily from five 
countries, and thus the classification performance will likely 
decrease when we use it to identify DR-TB from other countries 
or when we perform a country-level evaluation.  

We observe from Table 1 that patient type plays an important 
role in discriminating between DR-TB and DS-TB, with 
specificity decreasing around 5% when removing patient type 
from the training features. This is probably due to the fact that 
most of the patients with patient types of Failure (95%) and 
Relapse (83%) are drug resistant.  

Experimental results show that automated discrimination 
between DR-TB and DS-TB using a RF model achieves an AUC 
value of 83% and an accuracy of 75% with the top 10 
demographic and radiological features. Our study suggests that 
automatic discrimination between DR-TB and DS-TB is 
possible by utilizing both demographic features and radiological 
features. 
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Abstract: Classification of drug-resistant tuberculosis (DR-TB) and drug-sensitive tuberculosis (DS-
TB) from chest radiographs remains an open problem. Our previous cross validation performance
on publicly available chest X-ray (CXR) data combined with image augmentation, the addition of
synthetically generated and publicly available images achieved a performance of 85% AUC with a
deep convolutional neural network (CNN). However, when we evaluated the CNN model trained to
classify DR-TB and DS-TB on unseen data, significant performance degradation was observed (65%
AUC). Hence, in this paper, we investigate the generalizability of our models on images from a held
out country’s dataset. We explore the extent of the problem and the possible reasons behind the lack
of good generalization. A comparison of radiologist-annotated lesion locations in the lung and the
trained model’s localization of areas of interest, using GradCAM, did not show much overlap. Using
the same network architecture, a multi-country classifier was able to identify the country of origin of
the X-ray with high accuracy (86%), suggesting that image acquisition differences and the distribution
of non-pathological and non-anatomical aspects of the images are affecting the generalization and
localization of the drug resistance classification model as well. When CXR images were severely
corrupted, the performance on the validation set was still better than 60% AUC. The model overfitted
to the data from countries in the cross validation set but did not generalize to the held out country.
Finally, we applied a multi-task based approach that uses prior TB lesions location information to
guide the classifier network to focus its attention on improving the generalization performance on
the held out set from another country to 68% AUC.

Keywords: Tuberculosis (TB); drug resistance; deep learning; chest X-rays; generalization; localization

1. Introduction

According to the 2020 World Health Organization (WHO) report [1], it is estimated
that in 2019 about 10 million people fell ill with Tuberculosis (TB) and about 1.4 million died
from the disease. Based on the same report, it is estimated that in 2019 about 0.5 million
individuals were infected with rifampicin-resistant TB out of which about 400,000 were
multidrug-resistant.

Drug-resistant TB (DR-TB) is a growing public health concern requiring longer and
more complex treatment than drug-sensitive TB (DS-TB), in addition to incurring higher
financial costs. Treatment for DR-TB requires a course of second-line drugs for at least
9 months and up to 20 months, supported by counselling and monitoring for adverse
events. In comparison, treatment of DS-TB only lasts between 6–9 months. Early diagnosis
of DR-TB is crucial for selecting appropriate, patient-specific, treatment regimens. Thus,
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improving early decision making has the potential to increase favorable patient outcomes,
combat the spread of infection and reduce the overall financial costs associated with
the disease.

Currently, the diagnostic methods for identifying DR-TB infections require culture
and drug susceptibility testing. These procedures are not feasible globally, especially for
countries unable to scale up their testing capacities. An automated, low cost, computational
approach that utilizes readily available resources such as medical images and other clinical
information is thus desirable.

In the context of TB diagnosis, automated deep learning based systems which only
utilize Chest X-rays (CXRs) have seen significant success, with multiple commercial offer-
ings available [2,3]. In one evaluation study, these systems classified CXRs as TB/not-TB
with an Area Under the Curve (AUC) of above 0.9 [2]. In another study, they outperformed
radiologists, with two of the systems meeting the WHO’s target product profile for triage
tests [3].

Currently, discrimination between DR-TB and DS-TB using readily available clinical
images and possibly additional clinical side information is still an open problem. In this
work, we used both deep and classical machine learning algorithms to classify drug-
resistant (DR) and drug-sensitive (DS) tuberculosis in chest X-ray images, radiological
features, and clinical patient information. Specifically, we have:

• analyzed a state-of-the-art classifier in terms of its capability to generalize on unseen
data from another country. This has been an issue largely neglected by the research
community in the past. However, we show that a high classification performance is not
sufficient for practical usefulness. The capability to provide consistent performance
across different datasets, hospitals, and countries, is essential;

• investigated the problem of poor generalization to unseen data by comparing the
performance of the deep learning based classifier with other classifiers trained on
texture features extracted from X-ray images. We also explore if these generalization
problems exist in other clinical data, and if non-disease related attributes such as the
origin of chest X-rays can influence the drug resistance detection performance;

• studied explicit and implicit ways to steer the attention of the classifier. We use seg-
mented lungs as a means to guide the network to learn explicitly from the lungs. We
also propose a novel multi-task approach that uses prior information (TB lesions’ loca-
tions) to implicitly focus on the important regions and improve DR/DS classification
performance.

2. Previous Work

Attempts to utilize images and clinical data to distinguish between DR-TB and DS-TB
have been previously described in multiple publications. These works are either based
on the utilization of radiological findings identified in the image by a clinician or via
fully automated methods which receive as input the image and potentially other available
clinical data and output the likelihood for each of the two classes.

Several studies have shown that radiological findings based on a radiologist reading
of a CT or CXR have the potential to differentiate between the two classes. A literature
review from 2018 [4] concluded that the presence of thick-walled multiple cavities in the
images is a useful predictor for DR-TB, with good specificity but low sensitivity. Another
study [5] compared 183 DR-TB cases and 183 DS-TB cases from a single hospital. This study
concluded that there were substantial differences in findings between the two classes in
terms of lesion size and morphology. A slightly larger study [6], which compared 468 DR-
TB cases and 223 DS-TB cases concluded that a combination of the number and size of
consolidated nodules is a good predictor for DR-TB. Another, small study [7], utilized data
from 144 patients and found that the presence of multiple cavities is a good predictor for
DR-TB. A much larger study [8], compared 516 DR-TB and 1030 DS-TB cases, obtaining
an AUC of 0.83 using a regression model. This study observed that the co-existence of
multiple findings (multiple cavities, thick-walled cavities, disseminated lesions along the
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bronchi, whole-lung involvement) was indicative of DR-TB. Finally, more recent work [9]
compared 1455 DR-TB and 782 DS-TB cases, using two clinical features and 23 types of
radiological findings. A support vector machine was used to distinguish between DR-TB
and DS-TB with an AUC of 0.78. It should be noted that reliance on a radiologist reading is
a significant limitation. The lack of consensus on radiological findings for drug resistance
further hinders the clinical usefulness of these approaches. Because of these reasons, fully
automated solutions, described next, are more desirable.

Several fully automated solutions were presented as part of the ImageCLEF 2017 and
2018 evaluation challenge forums [10]. These challenges included a subtask, differentiating
between DR-TB and DS-TB using thoracic Computed Tomography (CT) images. This
classification task included 259 training images and 236 test images with about half of the
cases DR-TB and half DS-TB. Proposed solutions included Gentili et al. [11] who reformatted
the CT images to the coronal plane and used a pre-trained ResNet50 Convolutional Neural
Network (CNN). For the same challenge, Ishay et al. [12] used an ensemble of 3D CNNs
and Cid et al. [13] used a 3D texture-based graph model and support vector machines
(SVM). Allaouzi et al. [14] replaced the softmax function of a 3D CNN architecture with an
SVM to tackle this classification task. All entries had limited success, resulting in AUCs of
about 0.6. After two editions, the organizers removed the subtask from the competition
with the conclusion that “the MDR subtask was not possible to solve based only on the
image”. While these challenges did not yield the desired results, the results obtained using
radiologist readings are more favorable, suggesting that the sub-optimal performance
may be due to the small number of images available for training. It should be noted that
increasing the number of CTs for this task is not trivial as the use of CT imaging in DS-TB
cases is uncommon, with the standard imaging modality being CXR. The rare use of CT
imaging in standard practice, and the consequential lack of data to analyze, limits the usage
of CT images to train a model to distinguish between DR and DS-TB.

On CXR images, [15] utilized a customized CNN architecture to classify DR-TB and
DS-TB from 2973 images from the TB portals dataset. They achieved a classification per-
formance of 66%, which improved to 67% when follow up images were also included.
Our group has previously proposed fully automated methods utilizing CXRs as described
in [16,17]. In [16], we utilized 135 CXRs from a single source. Using a shallow neural net-
work we obtained an AUC of 0.66. In [17], we utilized a much larger dataset, 3642 images
from multiple sources. Using a deep neural network, InceptionV3 pre-trained on Ima-
geNet, we obtained an AUC of 0.85. This result is the current state-of-the-art performance
achieved on the TB portals data. This is a significant improvement of results from other
approaches. However, even though a 10-fold cross validation was performed, the capability
of the trained network to classify chest X-rays from unseen domains was not evaluated. In
fact, the common weakness of all of these automated methods is that they have not been
evaluated for generalization by separating the source of the data. As different medical
imaging technologies and devices produce different standards and quality of images, it is
important for our models to be robust to these changes.

An underlying assumption of most machine learning algorithms is that the population,
test, and training data are independent and identically distributed. If the two distributions
are different, then the learned parameters will not yield a good performance. That is,
the model will not generalize well to unseen data. While CXR imaging is a low cost
modality that is in widespread use, the variations in the standards of the acquired images is
significant [18,19], bringing into question the utility of any proposed method which is not
evaluated on its generalization capability. More specifically, Harris et al. [20] found that 80%
of published works on using CXR for TB diagnosis either used the same databases to train
and test their software, or did not comment on databases they used for testing their models.
Sathitratanacheewin et al. [21] also observed that a model for CXR-based TB diagnosis
performed well with 0.85 AUC when tested on images within their intramural dataset with
significant performance deterioration when tested on extramural images, yielding an AUC
of 0.7. For domain shift, when the change in image distribution between the training and
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testing sets is inevitable, it has been shown that these effects can be ameliorated if training
is formulated using a multi-task approach [22].

In addition to the generalization issues due to domain shift, the generalization of
deep learning algorithms can also deteriorate if they learn irrelevant features. This is a
specific shortcoming of deep learning algorithms as they do not preclude the algorithm
from learning features present in the training set that are arbitrarily correlated with the
disease, yet are completely irrelevant. These can stem from characteristics of the imaging
devices or clinical practices such as patient positioning [23–25] used at the specific locations.
If a model implicitly learns such features it will not generalize well when presented with
data obtained on different imaging devices or using different clinical workflows, both of
which are irrelevant to disease diagnosis.

In this work, we explore various strategies to improve the generalization of models
for classification of CXRs as DR-TB or DS-TB using various normalization and attention
mechanisms, both explicit (segmentation based) and implicit (multi-task based).

3. Data
3.1. TB Portals Data

The primary data source used in this work is from the NIAID TB Portals program
(https://tbportals.niaid.nih.gov (accessed on 10 January 2022)), with a public data re-
lease date of October 2020. The dataset contains clinical data and CXR images that are
anonymized and made available for public use [26]. Each patient record is manually an-
notated with clinical information and radiological findings based on the associated CXR
image. For this work, data from 1756 patients from ten countries were used. Table 1 shows
the data distribution based on country of origin and gender. It should be noted that the
TB portals data were collected with a primary focus on acquisition of drug-resistant cases
and cases that reflect the specific research interest at the country of origin. As a result, the
data are imbalanced in terms of the ratio between drug-resistant and drug-sensitive cases,
which does not necessarily reflect the prevalence of TB from either class in the contributing
country. Interestingly, we also see that the data are not balanced in terms of gender with
about double the number of males to females. This does reflect known differences in TB
prevalence in females versus males and has been linked to both societal and biological
differences between the sexes [27–29].

Table 1. Patient distribution from different countries and genders for the chest X-ray data used in
this work.

Country Number of Patients
Drug-Sensitive Drug-Resistant Male Female

Belarus 118 344 294 168
Georgia 399 236 472 163
Romania 15 114 91 38

Azerbaijan 0 32 24 8
India 197 21 165 53

Moldova 12 32 37 7
Kyrgyzstan 0 18 11 7

Ukraine 8 25 25 8
Kazakhstan 15 53 36 32
South Africa 114 3 72 45

Total 878 878 1227 529

3.2. Clinical Data

The clinical data contain an extensive set of features associated with each patient.
This includes demographic data, radiologists’ findings for each CXR, different diagnostic
tests and treatment information. Additionally, it includes demographic features such as
age of onset, gender, patient type (New, Relapse or Failure), body mass index, country of
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origin, education, employment, number of daily contacts, number of children, prescription
drug usage, laboratory tests, treatment period, treatment status and outcome. The radi-
ologists’ findings include chest radiography patterns such as nodules, cavities, collapses
and infiltrates and their location in the lungs. Due to financial constraints and the size of
the TB portals CXR dataset, radiological findings are obtained using a single experienced
radiologist-reading per image. The whole dataset was annotated by multiple radiologists
from the countries contributing data to the program. Consequentially, the radiological
findings are not biased towards a single radiologist. Table 2 lists all finding types used by
the radiologists to annotate the images. These are abnormalities commonly associated with
TB. In addition to the type of abnormality, the findings are further differentiated based on
their size (small, medium, large) and number of occurrences (single, multiple).

Table 2. Twenty features derived from the presence of abnormalities that are localized to different sextants.

Types of Abnormalities

collapse small nodules
small cavities medium nodules
medium cavities large nodules
large cavities huge nodules
large cavity belonging to multiple sextants non-calcified nodule
multiple cavities clustered nodules
low ground glass density, active fresh nodules multiple nodules
medium density stabilized fibrotic nodules infiltrate: low ground glass density
high density calcification, typically sequella infiltrate: medium density
calcified or partially calcified nodule infiltrate: high density

3.3. Chest X-ray Images

All TB Portals CXRs used in this work are from a frontal, AP or PA, view and have
varied resolutions (206 × 115 to 4453 × 3719). The intensity range found in the images
also varies, with 1177 images having a low dynamic, intensities in the 0–255 range, and
579 images having a high dynamic, intensities in the 0–65,536 range.

It should be noted that the drug susceptibility label associated with each image is
obtained via drug susceptibility testing and is not derived from the image. Additionally,
the usage of radiological findings for predicting drug susceptibility has shown moderate
success. Thus, the question of whether good performance for predicting drug susceptibility
from CXRs from unseen sources is possible remains open.

In addition to the CXRs from the TB Portals program, we use a publicly available TB
CXR dataset collected from a hospital in China [30] (Download from http://openi.nlm.nih.
gov/imgs/collections/ChinaSet_AllFiles.zip (accessed on 10 January 2022)). This dataset
contains 662 frontal chest X-rays, of which 326 are labeled as non-TB cases and 336 are
labeled as TB. There are two sets of annotations where each abnormal TB image has been
manually annotated by two radiologists. Figure 1 shows one such segmentation.

Sextant Division

To further differentiate between radiological findings, we associate them with their
spatial location in the lungs. To do so, we define lung sextants by dividing each lung into
three equal sections from apex to base, as shown in Figure 2. The division of the sextants
can be subjective for findings close to sextant borders, when the division boundaries may
not be strictly adhered to by the annotating radiologist. In this work, we say a sextant is
affected by TB if at least one of the abnormalities listed in Table 2 is present in the sextant.
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Figure 1. Example of a lung segmentation for a nodule and a cavity.

Figure 2. Definition of six lung sextants. Abnormal annotations are assigned to one or more of these
sextant divisions.

3.4. Dataset Definitions

For our experiments, we only select the first image taken in the clinical process for a
patient; hence, the number of images is equal to the number of patients. All of our drug
resistance classification experiments feature an equal number of DR and DS patients in the
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training set. For data balancing, we use a conservative approach, excluding images from
the majority class. The subsets used for training and evaluation are listed below:

• Generalization Dataset (Gen. Dataset): A total of 1520 samples are selected for this
set, 760 samples for each class. All samples originating from the country Belarus
are excluded.

• Dataset with sextant annotations (Sext. Dataset): This set contains a total of 1118 samples,
559 samples for each class. This set also does not include any data from Belarus.

• Validation Set: This is a cross validation set, which varies for each fold. It contains
a randomly selected set containing 20% of the dataset (5-fold CV) for each cross
validation training. The numbers reported for the validation set are the average
performance values of all cross validation folds. Because, this would be a subset of the
above two datasets, no samples from Belarus will be present in this set either.

• Belarus Dataset: This dataset contains a maximum of 118 samples from each class with
236 samples in total. The Belarus dataset is used as the test set for most experiments.
When sextant-based data should be required, five samples from each class are removed
as they do not contain sextant information.

3.5. Data Standardization

Lung segmentation is used to explicitly address the challenges associated with gen-
eralization due to domain shift and the possible existence of confounding factors due to
class-correlated yet irrelevant features. Segmentation enables us to limit the input images
for the binary DR/DS classifier so that they only contain regions relevant for classification
of pulmonary tuberculosis, meaning the lungs. Additionally, the lungs are scaled to a
uniform size and position within the image, removing potential confounding factors such
as lung size and patient placement that are often correlated with the clinical sites and thus
with the local prevalence of TB types. Once the lung regions are segmented, the image
is cropped to the lung bounding box, Figure 3c, and all information outside the lung is
removed, Figure 3d.

For lung segmentation we initially utilized a publicly available U-Net model which
was trained on two datasets with a total of 385 images and corresponding manual lung
segmentations [30,31] (https://github.com/imlab-uiip/lung-segmentation-2d (accessed
on 10 January 2022)). Unfortunately, this model failed frequently when applied to the TB
portals images. Often, one or both sides of the lung were not segmented.

Furthermore, segmentation using this model failed on pathological lung regions in a
significant number of images, which is detrimental for disease analysis.

To address these performance limitations a U-Net based [32] segmentation model
with a ResNet50 backbone [33] was trained using the publicly available v7 COVID-19
X-ray dataset, which contains 6500 images and corresponding manual lung segmentations
(https://github.com/v7labs/covid-19-xray-dataset (accessed on 10 January 2022)).

As the TB portals dataset does not provide ground truth lung segmentations, results
were visually evaluated as either failure or success. The segmentation failure rates of this
model and the previous model were 0.06% and 3% respectively. Aside from that, the old
model segmented one of the lungs with less than 10% of the corresponding ground truth
pixels in 0.8% of the cases. No such cases were observed in the new model. Figure 4
illustrates the difference between the two models applied to the same set of 72 images.
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(a) Input CXR image (b) Binary Lung Mask

(c) Cropped Image (d) Lung Segmented

Figure 3. Original CXR (a) is fed to the U-Net, which outputs a binary lung mask (b) with which the
original CXR is cropped(c) and the lungs are segmented (d) in the cropped bounding box.

(a) (b)

Figure 4. Cropped images based on the lung segmentation results obtained using a publicly available
UNet model trained on the combined JSRT and Montgomery datasets (a), and using a customized
UNet model trained on the v7 COVID-19 X-ray dataset (b). The performance of the customized
model is clearly better. Note that if the segmentation fails, the entire image is used.
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4. Drug Resistance Classification

For classifying between drug-resistant and drug-sensitive TB, we primarily use the
chest X-rays but also utilize text data to assist with the classification and to compare
the performance when using just the images. Classic machine learning algorithms and
CNNs with pretrained weights were used on the clinical text data and chest X-ray images
respectively. Figure 5 shows the setup of our classification network where the preprocessed
chest X-ray image is the input and the prediction is either drug-resistant (DR) or drug-
sensitive (DS).

As the focus of this work is to evaluate, understand and propose solutions to the issue
of generalization to unseen data, we describe in the following subsections: (a) the need
of domain adaptation for a network to generalize to unseen data, (b) the use of radiomics
features derived from chest X-rays, (c) multi-task learning as a means to provide implicit
attention to the main task of DR/DS classification, (d) classifying per-sextant abnormality,
and (e) segmenting abnormal regions.

Figure 5. Standard CNN architecture for drug resistance classification. The Input (X) is a preprocessed
X-ray image with segmented lungs. The Output (Y) is one of two classes, DR-TB or DS-TB. For this
work, we use the ResNet18 [33] architecture as the backbone for all of our experiments.

4.1. Domain Adaptation

The distribution for which a trained model is tested can often be significantly different
from the distribution that it was trained on. There is no guarantee that a trained model will
be robust to data it has not seen before. Different acquisition standards [34], equipment, and
even personnel can create vastly different looking images for medical images. Even after
acquisition, other processing and storage differences can create differences in the images.
For a human, these variations may be easier to overcome but a machine learning model
needs to be trained to understand the differences. Either smart features and algorithms
need to be employed or a large and diverse set of data is required to train such a model.

Evaluation of models on unseen data from different domains is the logical way to
evaluate such models. Besides that, interpreting the model’s decision can also be valuable
to understand a prediction. For drug resistance TB classification, localizing the prediction
decisions is worthwhile, as tuberculosis itself is frequently observed in certain regions of
the lung.
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Furthermore, it is worth exploring how easily images from different domains can be
discriminated. Easily distinguishable domains in the input coupled with an imbalanced
dataset can readily result in failure to generalize.

The usage of transfer learning enables a model to adapt to the new domain, but is
less desirable when compared to a fixed model which does not require additional training
per domain. Starting from pretrained weights allows for the high-level features to be
consistent and not overly dependent on the domain of the training images. This explains
why networks initialized with pretrained weights consistently outperformed networks
randomly initialized [17].

4.2. Radiomics Features

Usage of explicit, engineered features can be used as a counter measure to prevent
a network from learning correlated, yet irrelevant, features within a dataset. Radiomic
features have been used to extract patterns that may have been missed by radiologists to
identify abnormalities present in medical images [35].

The features used in the paper include 2D-shape based features (e.g. axis lengths), first
order statistics (e.g. skewness), gray-level co-occurence matrix features (GLCM), gray-level
dependence matrix (GLDM), gray-level run length matrix (GLRLM), gray-level size zone
matrix (GLSZM) and neighbouring gray-tone difference matrix (NGTDM) features.

4.3. Multi-Task Learning

To encourage a network to focus on desirable localities, such that the network is
generalizing based on the actual abnormalities within the provided anatomical regions,
adding a secondary task sharing some of the features is a promising approach. When
networks have been trained to predict different but related tasks in tandem, performance
on each of the tasks have benefited [36]. The auxiliary information from a secondary task
can be beneficial to the main task and is useful to regularize the network as well.

A big motivation behind using multi-task learning for this work is the availability of
the radiologists’ annotations for different abnormalities in the lung, localized to the six
divisions (sextants) of the lungs. While this information will not be available during testing,
it can be utilized to regularize the main model and to focus the attention of the network to
supposedly relevant areas of the image. For our drug resistance classification, the network
consists of a pretrained CNN network that is trained with binary cross entropy loss. For
multi-tasked networks, the combined loss [37] for the two tasks is as follows:

L =
1
σ2

1
×L1(W) +

1
σ2

2
×L2(W) + log σ1 + log σ2, (1)

where W represents the weights of the network, and σ1 and σ2 are the noise parameters
for the respective tasks, which are used to determine the relative weights given to each of
the losses.

4.4. Abnormal Sextant Classification

The abnormal sextant information provides the locations of TB-related abnormalities
to the network. These are expert-annotated features that provide additional context and
information during DR/DS classification. Figure 6 shows the architecture for this type
of multi-task learning. The classification model is modified such that the output of the
last convolution layer is diverged into two stacks of fully-connected layers. The first
path is the same as the normal architecture where the network decides if the X-ray image
shows manifestations of drug resistance or drug sensitivity. The second path outputs a
vector of length 6. Each of the six values represents the presence or absence of any of the
20 abnormality features described in the Data section above. Hence, for each sextant, if one
of the abnormalities is present, the sextant is considered ‘abnormal,’ whereas if none of
the abnormalities is present, it is considered ‘normal.’ In Equation (1), L1 and L2 are both



Diagnostics 2022, 12, 188 11 of 23

binary cross entropy losses in this case. For the secondary task, the loss is the average loss
among all six outputs.

4.5. Abnormality Segmentation

Segmenting abnormalities provides location information as the locations of each of
the sextants are also available. For this task, the losses from Equation 1 are modified such
that L1 is the binary cross entropy loss and L2 is the combination of Jaccard loss and
binary cross entropy loss for the segmentation of abnormal regions. Figure 7 shows the
modification of the base model into an encoder-decoder U-Net style architecture for the
additional task of abnormality segmentation. Two approaches are taken into account to
determine the abnormal ground truth regions.

4.5.1. Sextant Segmentation from Radiologist Annotation

The sextant annotations from the radiologist are converted into masks such that the
location information of each sextant is also available to the network. Each pixel in the
sextant with presence of any abnormality is set to 1, and 0 otherwise. This is similar to the
sextant classification with added information of the location of each of the sextants.

4.5.2. TB Abnormality Segmentation

Instead of using the abnormalities from clinical text data, we alternatively use the TB
abnormality segmentation network to derive the ground truth. The Shenzhen dataset with
annotations has a finer segmentation of abnormalities. In this approach, the chest X-ray
images are segmented for lesions using the network trained on the Shenzhen data [30].
The advantage of this approach is that even images without annotations can be used
for training.

Figure 6. Multi-output network with the same pretrained backbone (ResNet18) for the additional
task of abnormal sextant classification. The data used for this task is multi-modal. The inputs to the
network are the chest X-ray images, whereas the labels for abnormal sextants are derived from the
clinical text data described in Section 3.2.
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Figure 7. Multi-output network for the additional task of abnormality segmentation. The pretrained
backbone (ResNet18) is modified to be a U-Net with encoder and decoder. The inputs for this network
are chest X-ray images whereas the segmentation output masks are derived from the clinical text data.

5. Experimental Results

We perform our experiments with a 5-fold cross validation stratification. We also
separate 7.5% of the training data, to check inter-epoch performance and stop the model
early once the performance degrades for a long period on this set. The pretrained network
backbone, as described in Figure 5, is the ResNet18 [33] architecture. The number of
parameters for ResNet18 (11 million) are half of that of InceptionV3 (22.3 million), which
we previously used [17]. Even with the smaller network and smaller dataset (since samples
are held out), the performance on the validation set was 79% AUC. As we convert these
networks to a U-Net style segmentation network for secondary tasks, the difference in
parameters is increased even more. With the choice of ResNet18, we are able to transfer the
pretrained weights from ImageNet [38] and keep the number of total trainable parameters
small while having a consistent network to compare different approaches.

5.1. CNN-Based Drug Resistance Classification

To examine if our network is robust against domain changes and if it generalizes well
to unseen data, we exclude the data from one country before cross validation stratification
and use it as a held out set. As we see from Table 1, the only two countries that have more
than 100 samples in each class are Belarus and Georgia. Aside from these two countries,
every other country has less than 25 samples in the minority class. Choosing other countries
would lead to a highly imbalanced testing set or a testing set with very few samples per
class. When we excluded Georgia to use it as a held out set for evaluating generalization,
the total number of samples decreased by almost half. There were only 479 samples per
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class for the balanced training set. The AUC performance on the validation set was 78%
but the performance on the held out Georgia data was at 52%. Also, less than 25% of
the Georgia patients had sextant information available and hence the evaluation for the
multi-task learning was not feasible. The data from Belarus has been used previously
in [16], to both train and evaluate the classification of DR/DS TB from chest X-rays. Because
of these reasons, we only used the data from Belarus as our held out set and used Georgia’s
data as part of the training sets.

For our classification training, we experimented with two different sets of initialization
weights. The first set of weights is from the ImageNet classification task and the second
set is from the network trained for TB-abnormality segmentation described in Section 5.6.
When we trained the model with the cropped images (Figure 3c), similar to the previous
approach [17], the performance on the validation set was 73% AUC and on the Belarus
dataset it was 55% AUC.

In an effort to improve generalization, explicit attention on the lung regions was
provided by setting the areas outside the segmented lung to 0 (Figure 3d). This approach
improved the classification performance on each of the datasets. Table 3 shows that the
best AUC performance was observed on the validation set, using both the ImageNet
classification and TB abnormality segmentation weights, with 79% AUC. On the Belarus
dataset, the best AUC of 65% was observed with the dataset with sextant information and
with ImageNet weights. Achieving a much better performance with this approach, we use
the segmented lungs as an input to the following experiments.

Table 3. DR-TB/DS-TB Classification Performance on the Validation Set and the Belarus Set.

Validation Set Belarus Dataset

Trained on Initialization Weights AUC Accuracy AUC Accuracy

Gen. Dataset ImageNet classification [38] 0.79 ± 0.03 0.72 ± 0.04 0.60 ± 0.01 0.55 ± 0.03
TB abnormality segmentation 0.79 ± 0.02 0.72 ± 0.03 0.60 ± 0.02 0.57 ± 0.02

Sext. Dataset ImageNet classification 0.77 ± 0.03 0.72 ± 0.03 0.65 ± 0.02 0.62 ± 0.02

5.2. Classification with Radiomic Features

With the usage of non-learnable features, some acquisition-specific details can be
hidden, which may be easily identified by a sufficiently large deep network. For this
purpose, 104 radiomic features are extracted with the aid of the pyradiomics (https:
//pyradiomics.readthedocs.io/en/latest/features.html (accessed on 10 January 2022))
library [35]. The library calculates the features based on the X-ray image and the mask of
the object of interest. We evaluate these features on both the lungs and the rest of the image
by providing the lung masks and the complement of the lung masks, respectively. For our
classifiers we use standard machine learning algorithms such as support vector classifiers
(SVC), k-nearest neighbors (k-NN), Random Forest (RF) and multi-layer Perceptron (MLP).

The support vector classifier achieved the best performance on the validation set and
the Belarus dataset, as seen in Table 4. Surprisingly, the best validation performance (74.5%)
was computed when the lung region was excluded, that is, only non-lung parts of the
image were used to derive these features. The performance on the Belarus dataset was
62.8%.

Table 4. AUC Performance with radiomic features.

Testing Data Input Data SVC k-NN RF MLP

Validation Set (Gen. dataset) Lung only 0.722 0.681 0.725 0.720
Lungs excluded 0.745 0.688 0.732 0.725

Belarus dataset Lung only 0.628 0.577 0.620 0.620
Lung excluded 0.583 0.563 0.621 0.530
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5.3. Classification with Sextant Divisions

The location of abnormalities are useful for classifying tuberculosis [39,40]. The
sextant-based annotations are localized features that show different abnormalities within
the lung. We also divide the chest X-rays into six divisions similar to how they were
annotated by radiologists.

We classify DR-TB and DS-TB from the annotations acquired and our divided chest
X-ray images. As described in Table 2, there are 20 such features for each of the sextants.
Hence, there are 120 features in total. Figure 8 shows how abnormalities are more frequent
in the apex of the lung.

Figure 9 shows the classification performance when individual sextants, the entire
lung, and top, bottom, and middle regions were evaluated regarding DR-TB vs DS-TB
classification. On the validation set, the CNN classifier trained on chest X-rays performed
indiscriminately to the lung location used for training. With the annotated data and classical
machine learning classifiers, the top sextants were more discriminatory than the bottom
sextants. On the Belarus dataset, however, classical machine learning classifiers were not
able to discriminate between the two classes with much success. An MLP (multi-layer
Perceptron) classifier was able to achieve 60% AUC performance. When a single sextant
was used, they all performed similarly at around 60%. Training on the entire image yielded
the best results (65%) on the CXR images.

When we reduce the number of features to use just the location information or the
type of abnormality, providing the location yielded better AUC performance (62.9%) on
the Belarus dataset. However, on the validation set, providing the type of abnormality
performed better (AUC of 70.0%) as shown in Table 5. ‘Location’ refers to the presence of any
abnormality in sextants whereas ‘Type’ refers to the presence of one of the 20 abnormalities
listed in Table 2 in any area of the lung.

Figure 8. Abnormality occurrence heatmap in different regions of the lung derived from radiologists’
annotated sextant data.
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Figure 9. Drug Resistance Classification—AUC performance on sextants.

Table 5. Performance when location and type are separated for annotated radiologic features.

Classifier: Validation Set Belarus Dataset
Location Type Location Type

SVC 0.573 0.700 0.629 0.539
KNN 0.501 0.670 0.484 0.506

RF 0.547 0.687 0.527 0.497
MLP 0.505 0.663 0.596 0.504
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5.4. Classification with Data and Network Capacity Limitations

The classification performance with radiomic features derived from the non-lung
region also prompted us to further examine the performance of our CNN classifier with
limited information in Table 6. The limitations we added are regarding the input data and
the training networks.

To further investigate the bias in the data that is supposedly not related to the underly-
ing disease manifestations, we apply limitations to the information received by the network
or limit the capacity of the network itself. This was achieved by modifying the data as well
as the training network. Figure 10 shows examples of different ways the X-ray images were
manipulated to reduce the information input to the classifier network. The information
from the chest X-rays were limited or diminished by randomizing pixel locations. For
example, in a particular experiment, entire image intensities were randomized. This would
conceal the spatial relationships between pixels but still preserve the histograms and first
order statistics of image intensity values. For further experiments, only certain regions of
the image were randomized and the rest were set to 0. Lung masks were also used as input
where the pixel intensity values are lost but the shape of the lungs are still intact. Another
approach was subtracting the mean of the background (non-lung) and re-normalizing
each image.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. Different ways in which a chest X-ray image is modified to limit the information the
classifier relies on. Top (left to right): (a) Cropped X-ray image, (b) lung mask, (c) segmented lung,
(d) segmented lung with mean of background subtracted. Bottom (left to right): (e) Entire image
randomized, (f) lung pixels randomized with non-lung area set to 0, (g) non-lung pixels randomized
with lung pixels set to 0, and (h) lung pixels set to 0.

Table 6. Performance with input and model limitations.

Model Input Validation Set Belarus Dataset

Lung excluded 0.79 0.59
Histogram normalized (lung excluded) 0.74 0.58

Lung mask 0.61 0.55
Randomized pixels (entire image) 0.63 0.50

Randomized pixels (lung only) 0.64 0.50
Randomized pixels (lung excluded) 0.64 0.55

Frozen conv. layers (lung only) 0.66 0.62
Frozen conv. layers (lung excluded) 0.66 0.50
Background normalized (lung only) 0.75 0.61
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To limit the network and its capacity, all the convolutional layers of the CNN were
frozen (set to become non-trainable). These layers were used as a feature extractor and the
fully-connected layers acted as a trainable classifier. When the lung pixel values were set
to 0 (lung excluded), the performance on the verification test set (Belarus data) with the
CNN network was 59%. Histogram normalization did not yield better results for this. As
expected, when we completely randomized the pixel locations of the entire image or of the
lung regions the performance was random (50%) on the balanced Belarus dataset. Using
the shape of the lungs (lung masks) without the intensity values was enough to improve
that performance to 55%. When intensity values of the non-lung regions (background)
were provided, the performance further improved to 59%. On the same images, if the
background pixels were randomized again, the performance dropped back to 55%. This
series of results hints that the shape of the lung itself carries useful information. However,
it was interesting that the non-lung regions had a small contribution to the identification of
drug resistance. The performance on both datasets improved when the local information of
the non-lung regions was retained.

Freezing the convolutional layer weights (ImageNet weights) but allowing the fully-
connected layer weights to be trainable, the performance achieved was comparable at 62%.
Here, the frozen convolutional layers are acting as fixed feature extractors and the dense
layers are learning to interpret them. The approach and the performance were comparable
to using the radiomic features. Normalizing by subtracting the mean of the non-lung
regions from the lungs also had a similar performance of 61%.

5.5. Country Classification

Being able to identify the origin of the chest X-rays can be insightful in understanding
the extent of bias in the data based on the data origin and the acquisition standards within
a country. As seen in Table 1, the distribution of samples from different countries is not
uniform and neither is the distribution of samples of each class. The chest X-ray images
originate from a variety of imaging devices from hospitals in several different countries
with their own imaging protocols and other variances that affect image content. These
types of artifacts can often be identified by a deep neural network but may not be visible to
a human observer. The entire dataset was used for the country classification experiments.
Because the number of samples was imbalanced, we used weights based on the number of
samples for the categorical cross entropy loss function during our training.

The mean intensities of the input images to the training network were plotted to
observe the distribution differences across various countries in Figure 11. The width of
each violin plot represents the frequency of the mean intensity. Generally, the wider the
violin plot, the higher is the probability that the images of the respective country have the
corresponding mean intensity.The histogram equalization centers the mean of the images
intensities to zero for each of the countries and helps to reduce some of the bias present in
the dataset due to the images’ country of origin. The variance in the intensity distribution
is still present.

The multi-class country-of-origin classification from the X-ray images achieves an
accuracy of 85.7%. When histogram equalization is applied to the same images to remove
some of the intensity-based biases, performance decreased to 82.6%. These results show
that the models are very efficient in deriving the country of origin from the chest X-ray
images. Even with histogram equalization, the country classification performance did not
decrease sharply. This points to other biases in the data (potentially other acquisition biases)
that are not accessible like the country of origin.

We also performed a multi-class country-of-origin classification based on clinical text
data. Demographic features such as gender, age, and education, were included along with
radiological findings from chest X-rays (such as nodules, cavities, infiltrates, collapses,
etc.). The multi-class country-of-origin classification with seven demographic features and
20 radiological features resulted in an accuracy of 59.3%, and the classification with just
20 radiological features showed an accuracy of 35.2%. The confusion matrices in Figure 12
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show that the image-derived features have many fewer false predictions when classifying
the country of origin compared to the model trained on clinical features. The performance
of this classifier is based on clinical findings whereas the deep learning classifier is using
the image content which potentially includes information not related to the disease and
not visible to the human observer but detectable by the network, allowing it to obtain
better performance. Consequently, the DR/DS classifier also has access to this non-disease
specific information which may introduce confounding features into that model, improving
its performance on the trained domain but harming its generalizability.

5.6. Tuberculosis Abnormality Segmentation

Transfer learning with pretrained weights has been effectively used not only to reduce
training time compared to random initialization but also to obtain a better performance.
Intuitively, it makes sense to use TB abnormalities as priors to the drug resistance clas-
sification as well. Hence, we utilize the TB abnormality segmentation network to aide
the classification of drug resistance, using its weights and output for the multi-task clas-
sification. We use the Shenzhen dataset with TB lung lesions [30], which has two sets of
annotations for the same image.

The average segmentation overlap between the two sets of annotations was 0.538 (Dice
score). For the TB abnormality segmentation network, the cross validation Dice score was
0.636. The weights for this network are used to initialize the classification and multi-task
models. For the classification tasks, only the encoder weights were used, whereas for the
segmentation tasks all the convolutional layer weights were used.
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Figure 11. Mean intensity distributions per country for the normalized cropped X-ray images (top)
and the same images after histogram equalization is applied (bottom).
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Figure 12. Summation of confusion matrices on test sets from 5 folds on the country-of-origin classi-
fication task. (top-left) Lung-segmented images, (top-right) histogram-equalized lung-segmented
images, (bottom-left) radiological and demographic features and (bottom-right) radiological features.
Note that the image-derived features have a significantly better performance than the disease-specific
radiological findings.

Table 7 shows that the annotations by radiologists matched with the abnormalities
identified by the TB abnormality segmentation model in each of the sextants and overall.
The average GradCAM [41] map values for each of the sextants was poorly correlated
with sextant annotations. Abnormality predictions were also derived from the mean of
the GradCAM heatmaps (with a threshold of 0.7) and compared with the abnormalities
from the TB segmentation model. On both of these, the top sextants had very little overlap
compared with the middle and bottom sextants. This result is contrary to expectation as TB
abnormalities are often seen at the top of the lung [42].

Figure 13 shows some examples of DR-TB and DS-TB. GradCAM heatmaps show
the average of activations from the last layer of a CNN. In these examples, it can be seen
that for the DR-TB class, activations are more frequent. This is consistent with previous
results [9], where DR-TB patients are shown to have more abnormalities in their lungs.
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Table 7. Comparison (AUC) of localized abnormalities from different sources tested on Belarus dataset.

Ground Truth: Sextant Annotations Sextant Annotations GradCAM (Predictions)

Prediction: TB Abnormal Seg. Prob. Map GradCAM (Heatmap) TB Abnormal Seg. Prob. Map

Top Right 0.788 0.469 0.518
Top Left 0.742 0.504 0.567
Middle Right 0.759 0.627 0.692
Middle Left 0.759 0.630 0.716
Bottom Right 0.808 0.642 0.699
Bottom Left 0.758 0.571 0.665

Overall 0.769 0.574 0.643

Figure 13. GradCAM visualizations on X-ray images. Top row shows examples of drug-sensitive TB
and bottom row shows examples of drug-resistant TB.

5.7. Multi-Task Based Classification

As an approach to assist the drug resistance classifier, a secondary task was added
to further incentivize the network to focus on relevant areas. The second task acts as a
regulator to constraint the neural network to focus on the interesting regions. ResNet18
was used as the primary backbone for the networks and layers were added to generate
output for the secondary tasks. Instead of experimentally determining the best loss weights
for the model, we allow them to be learnt by the model itself.

Initially, both tasks were given equal weights to allow the network to determine
which task needs to be focused. To restrain the scope of the work, while we monitored
the performance on the secondary class, we only used the performance on the main task
to determine our experimental setup and hence we report the performance on the main
task only.

While adding a related secondary task did not improve the drug resistance classifica-
tion on the validation set, the AUC performance on the Belarus dataset improved by about
2%–3% and accuracy improved by 1%. An AUC of 68% (±1%) was the best performance
achieved on the Belarus dataset as shown in Table 8.
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Table 8. Classification performance with an additional task.

Validation Set Belarus Dataset

Trained on Secondary Task AUC Accuracy AUC Accuracy

Abnormal Sextant Classification 0.77 ± 0.02 0.70 ± 0.02 0.64 ± 0.01 0.61 ± 0.03Sext. Dataset Abnormal Sextant Segmentation 0.78 ± 0.02 0.70 ± 0.02 0.67 ± 0.01 0.63 ± 0.01
Gen. Dataset TB Abnormalities Segmentation 0.77 ± 0.02 0.69 ± 0.02 0.68 ± 0.01 0.63 ± 0.02

6. Conclusions

This paper explores the cross validation and generalization performance achieved for
drug-sensitive and drug-resistant classification on chest X-rays from different countries.
By excluding data from one country of origin from training and using it for testing, we
evaluate classifier performance on unseen data. The generalization performance was much
lower (65% AUC) compared to the cross validation performance (79% AUC). The same
CNN architecture was able to classify the country of origin from a chest X-ray image.
Evaluations with radiomic features from X-ray images, and experimental limitations to the
data and classifier, indicated that the model based its decisions on other artifacts present
in the images. TB lesions annotated by radiologists were utilized to see if the location
information was useful for discriminating between drug-resistant and drug-sensitive cases.
While GradCAM heatmaps from the X-ray image-based CNN model did not overlap
significantly with the TB lesions and the annotations from radiologists, adding a secondary
task related to the localization of lesions did improve the classification performance to
68% AUC. Because of an imbalanced dataset, insufficient amount of samples of one of the
two classes, and the lack of clinical text data describing the radiological findings for all
the patients, we only excluded one single country for our generalization evaluation. A
solution that does not require annotations by radiologists to improve the generalization
performance would be more valuable. Procedures and methods that allow the model to
pick up only the manifestations of disease are a direction for future research. In general,
we believe that experiments addressing generalization to new datasets should be standard
practice in medical image analysis with deep learning.
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Abstract.
OBJECTIVE: Diagnosis of tuberculosis (TB) in multi-slice spiral computed tomography (CT) images is a difficult task
in many TB prevalent locations in which experienced radiologists are lacking. To address this difficulty, we develop an
automated detection system based on artificial intelligence (AI) in this study to simplify the diagnostic process of active
tuberculosis (ATB) and improve the diagnostic accuracy using CT images.
DATA: A CT image dataset of 846 patients is retrospectively collected from a large teaching hospital. The gold standard for
ATB patients is sputum smear, and the gold standard for normal and pneumonia patients is the CT report result. The dataset
is divided into independent training and testing data subsets. The training data contains 337 ATB, 110 pneumonia, and 120
normal cases, while the testing data contains 139 ATB, 40 pneumonia, and 100 normal cases, respectively.
METHODS: A U-Net deep learning algorithm was applied for automatic detection and segmentation of ATB lesions. Image
processing methods are then applied to CT layers diagnosed as ATB lesions by U-Net, which can detect potentially misdi-
agnosed layers, and can turn 2D ATB lesions into 3D lesions based on consecutive U-Net annotations. Finally, independent
test data is used to evaluate the performance of the developed AI tool.
RESULTS: For an independent test, the AI tool yields an AUC value of 0.980. Accuracy, sensitivity, specificity, positive
predictive value, and negative predictive value are 0.968, 0.964, 0.971, 0.971, and 0.964, respectively, which shows that the
AI tool performs well for detection of ATB and differential diagnosis of non-ATB (i.e. pneumonia and normal cases).
CONCLUSION: An AI tool for automatic detection of ATB in chest CT is successfully developed in this study. The AI
tool can accurately detect ATB patients, and distinguish between ATB and non- ATB cases, which simplifies the diagnosis
process and lays a solid foundation for the next step of AI in CT diagnosis of ATB in clinical application.
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1. Introduction

Worldwide, tuberculosis (TB) is one of the top 10 causes of death. Tuberculosis is also one of the
most common causes of opportunistic infections and a major cause of death among people living with
Human Immunodeficiency Virus (HIV). In 2017, tuberculosis killed approximately 1.3 million HIV-
negative people, and about 300,000 HIV-positive people died from TB. According to the best estimate,
there were about 10 million people newly infected with tuberculosis in the world in 2017 [1]. In order
to reduce the global burden of this disease, the World Health Organization recommends screening
for active tuberculosis (ATB) among high-risk groups for early detection and timely treatment. For
the high-risk group, the incidence rate of tuberculosis is significantly higher than for the general
population [2]. X-ray examination is one of the auxiliary diagnostic tests for tuberculosis screening,
but there is a rate of missed cases in practice. With the popularization of computer tomography (CT)
technology in small and medium-sized hospitals, CT has become very helpful in identifying chest
parenchymal lesions and detecting the severity of lung disease in tuberculosis patients [3, 4]. CT
images can better display the characteristics of ATB, including cavities, parenchymal abnormalities,
lobular central nodules, and tree bud signs [5]. However, the diagnosis of tuberculosis in CT requires
a doctor with a certain diagnostic ability, which is a difficult task for most TB prevalent locations in
which experienced radiologists are often lacking [6, 7]. Consequently, the screening efficiency is quite
low, which may impair timely treatment of ATB patients.

Therefore, there has been an interest in applying artificial intelligence (AI) to the detection of ATB
in CT, which can help improve the screening efficiency. So far, various algorithms have been proposed
based on deep learning to automatically diagnose diseases in the medical field [8]. In the Image Net
Large Scale Visual Recognition Competition in 2012, deep learning techniques have achieved great
success, especially in the classification of medical images [7]. In 2018, Hwang et al. developed an
automatic detection software for ATB based on chest X-ray images, which showed better performance
than most doctors including chest radiologists [9]. Moreover, the use of deep learning to diagnose lung
nodules and pneumonia in images has demonstrated advantages and application values [10, 11]. Thus,
the recent success and promising results provide great encouragement for future clinical applications
of AI in assisting diagnosis of diseases using in medical imaging.

The purpose of this paper is to simplify the ATB diagnosis process and improve the diagnostic
accuracy based on an automated deep learning, artificial intelligence (AI) detection system for multi-
slice spiral CT images. It also improves the detection rate of early ATB for remote areas and reduces
the workload of radiologists. The structure of this paper is as follows: Section II mainly introduces the
data and methods, including the collection and arrangement of data, and the deep learning techniques
we used for developing the automatic detection model. Section III presents the final test results and
the measures for evaluating the performance of the algorithm. Section IV analyzes and discusses
the results, and describes the advantages and disadvantages of the software. Section V describes the
conclusions drawn from this paper. Finally, Section VI describes the outlook for the future.

2. Data and methods

2.1. Data

CT images of 868 patients (male 534, female 334; mean ± standard deviation of age: 47 ± 20 years
old), from April 2016 to May 2019, in the affiliated Hospital of Hebei University of China were
retrospectively collected. Each patient had a corresponding electronic image report for CT, and each
ATB patient also had a corresponding tuberculosis sputum smear report. These patients were divided
into 498 ATB (22 sputum smear were found negative, 476 sputum smear were found postive), 220
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Table 1
Training data

Study Total Sex Average±standard Maximum Minimum Total number

(case) Male Female deviation age age age of CT slices

ATB 337 237 100 44 ± 20 89 12 21460
Normal 120 60 60 42 ± 14 68 5 7410
Pneumonia 110 63 47 63 ± 16 89 14 6679

Table 2
Testing data

Study Total Sex Average±standard Maximum Minimum Total number

(case) Male Female deviation age age age of CT slices

ATB 139 92 47 43 ± 20 85 7 8908
Normal 100 48 52 43 ± 16 83 2 2293
Pneumonia 40 18 22 62 ± 16 86 18 6109

normal and 150 pneumonia cases. In this study, ATB cases were diagnosed using positive tuberculosis
smear as the gold standard, and normal and pneumonia cases were diagnosed using the radiologists’
reports as the gold standard. Then, all the cases were divided into a training data set and a testing data
set, including 337 ATB, 120 normal, and 110 pneumonia cases as the training data set to optimize
network weights; and 139 ATB, 100 normal, and 40 pneumonia cases as the testing data set to test
the performance of the algorithm. The training and the testing data sets are independent, with details
shown in Tables 1 and 2. Because of the similar imaging findings of pneumonia and ATB in clinical
diagnosis [12, 13], patients with pneumonia were enrolled in this study.

The main CT manifestations of ATB and non-tuberculous pneumonia are as follows: The CT appear-
ance of ATB is mainly characterized by multiple lung lobes, multiple lung segments, and multiple
morphologies, which are more likely to occur in the posterior segment of the upper lobes of the lungs
and the dorsal segment of the lower lobes. The morphology is mainly manifested as flakes or tree bud
signs, often accompanied by cord strip shadows, calcifications, voids, etc [14, 15] as shown in Fig. 1a.
Pneumonia is often confined to one lobe of the lungs. In CT, it is mainly manifested as smears or
ground glass shadows with blurred edges, uniform density, and air bronchial signs are often seen in
the lesions [16, 17] as shown in Fig. 1b.

In the development of accurate radiology deep learning algorithms, in addition to the appropriate
model structure, a large number of precise markers are needed to train the algorithm [18]. Therefore,
before developing a deep-learning-based automatic detection (DLAD) algorithm, this paper uses Labe-
lImg software to mark the lesions of 337 ATB patients in the training data. A total of 8213 CT slices
are marked, with a total of 13679 labels and an average of 5917 pixels per label. Two radiologists
negotiated to develop a unified standard for these markings (The standard is to circle the ATB lesions
in each CT slice with a box using LabelImg software. The same focus can be marked with multiple
boxes, which should not contain normal lung tissue and should exceed the abnormal lung area as little
as possible). All ATB, normal and pneumonia CT images were examined by five radiologists, with
more than 5 years of experience in CT reading, in the affiliated Hospital of Hebei University (Class
III Class A Hospital), China.

In this study, the CT images were scanned using Siemens (SOMATOM Definition AS) 64-row 128-
slice spiral CT, and 40-row 64-slice spiral CT. Before spiral CT scanning, a patient was trained in
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Fig. 1. Typical CT findings of (a) ATB and (b) non-tuberculous pneumonia.

breathing. When performing a spiral CT scan, the patient takes the supine position, raises the arms
and advances the head. The patient breathes in and finishes the whole lung scan within 5–8s. The scan
ranges from the chest entrance to the base of the lung, in spiral scanning mode. The tube voltage is
100 kV; tube current: 100 mA; pitch: 1.3; slice thickness: 5.0 mm; field of view: 430 mm.

2.2. Method

The algorithm was primarily developed by Shenzhen Smart Imaging Healthcare Co., Ltd and
CT/MRI Department, Affiliated Hospital of Hebei University in collaboration with several US and
Chinese institutions listed in the affiliation of authors. In this study, CT images of ATB were used as
positive samples, and CT images of pneumonia and normal patients were used as negative samples for
training and testing.

The primary architecture consists of a U-Net deep learning based CNN model to process each slice
of an entire CT scan to identify 2-D regions of interest (ROI) in each slice. The architecture also
involves a clustering technique based on the connectivity of an ROI to convert multiple ROIs in 2-D
slices into a single 3-D object of interest (OOI) in a 3-D scan, as shown in Fig. 2.

The training data process is as follows: First, the ATB lesions were labeled with rectangular boxes
centered at the locations of tuberculosis findings by a board-certified radiologist based on the radiology
reports, using LabelImg software developed by the authors of this paper. The training and testing data do
not overlap. Second, using a U-Net segmentation network to perform image segmentation training on
labeled ATB regions in the training data, the trained U-Net for automatic identification of ATB lesions
was obtained. Third, when diagnosing ATB patients, image processing methods have been added that
can effectively convert 2-D ROI at each slice into 3-D OOI for a CT scan. Finally, combining the steps
above, the AI detection software was obtained. In order to verify the performance of the AI detection
software, the testing data is used for detection evaluation.
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Fig. 2. Main framework of AI detection software.

2.2.1. U-Net deep learning technique to detect 2-D ROI at each CT slice
The U-Net neural network in this paper is used to predict the ATB lesions in each CT image, as

shown in Fig. 3. U-Net is an image segmentation network based on a Convolutional Neural Network
(CNN) for extracting image features. The basic component of U-Net is the same as the traditional
convolutional network in that it performs convolution, batch normalization, activation, and maximum
pooling operations in sequence [19]. However, there is a big difference between the U-Net network
structure and the traditional CNN network structure. The first half adopts a downsampling pooling
operation, so that the resolution of each feature map is reduced to 1/4 of the original size, and the
second half adopts upsampling and merging operations, respectively improving the resolution of the
feature map, and the fusion of shallow and deep information makes up for the loss of characteristic
information caused by the introduction of pooling operations.

2.2.2. Clustering technique to detect 3-D OOI for an entire CT scan
After the U-Net segmentation network is used to predict lesion areas (ROI) of ATB in the testing

data, the next step is to convert these 2-D ROI into 3-D OOI by combining CT slices with ATB lesions.
If the contour of an ATB lesion slice is detected, and the center points of adjacent bounding boxes are
within 30 voxels, the bounding boxes were fused into one, avoiding the interference of tiny regions.
Then, the CT slices of ATB lesions at the joint with Intersection Over Union (IOU) >0.3 of adjacent
ATB lesion slices were selected, which means the overlap of ATB lesions in adjacent CT layers is
greater than 30%. Patients who meet the above conditions, and who have more than four consecutive
ATB lesion slices, are classified as ATB patients, as shown in Fig. 4.

2.3. Statistical method

We use our AI software to process the testing data, and plot the ROC curve achieved by our model.
To evaluate our software, we compute the AUC value, accuracy, Sensitivity (SS), Specificity (SP),
Positive Predictive Value (PPV), and Negative Predictive Value (NPV).

In order to generate the ROC curve and AUC from our segmentation network, we innovatively
propose a new method in this study. For each patient, the predictions at each pixel of an input CT slice
(Fig. 5a) were computed with a confidence score, which can be displayed as a gray level within the
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Fig. 3. Architecture of our adapted U-Net network.

Fig. 4. AI detection software - diagnostic flowchart.

range of [0,255]. The threshold value was set to 127. Every input CT slice of the patient was then
preprocessed by normalizing pixel values from the range [0, 255] to [0, 1], with a threshold value of
0.5, changing the gray image (Fig. 5b) into a binary image (Fig. 5c). The degree of confidence in a
tuberculosis lesion was obtained by averaging the confidence scores for every pixel within the identified
region. Therefore, each patient possesses a degree of confidence, and the patient-level predictions were
then obtained to generate the ROC curve.

3. Result

Applying our AI detection software to the testing data of 279 cases, the number of correctly detected
ATB cases was 134, the number of missed positive ATB diagnoses was 5, the number of correctly
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Fig. 5. Example images for generating the ROC curve: (a) Input CT image of a patient; (b) gray image; (c) binary image.

Table 3
Software performance on testing data

True value

ATB (case)+ Not ATB (case) – Total (case)

Pneumonia Normal

Predicted value ATB (case)+ 134 2 2 138
Not ATB (case) – 5 38 98 141

Total (case) 139 40 100 279

detected non-ATB cases was 136, and the number of false positives was 4, as shown in Table 3. Figure 6
(a) shows the original four consecutive CT layers of an ATB patient in the testing data, and Fig. 6 (b)
shows the corresponding four CT layers of the ATB patient diagnosed by our AI software. Figure 7 is
a ROC curve plotted for our AI detection software on the testing data. The area under the ROC curve
reached 0.980 (AUC = 0.980). We computed the following performance indices for our software: The
accuracy rate is 0.968, the SS is 0.964, the SP is 0.971, the PPV is 0.971, and the NPV is 0.964, as
shown in Table 4.

4. Discussion

Tuberculosis is a disease that occurs throughout the world. Because chest X-rays have limitations, CT
has become important for the diagnosis of ATB [20]. Researchers have tried using various automated
detection methods to diagnose tuberculosis [6, 21–24]. However, to the best of our knowledge, chest
radiographs are commonly used for detecting ATB, and no studies have been conducted for detecting
ATB in CT images using AI. A study on the detection of pulmonary tuberculosis using AI in CT has
reported the prediction of multi-drug resistant tuberculosis in CT lung images based on deep learning
technology, with an accuracy rate of 91.11% [25].

In the data analysis, we found that the minimum ages of ATB, normal, and pneumonia patients were
12, 5, and 14 respectively, and the maximum ages were 89, 68, and 89, respectively. In the testing data,
the minimum ages of ATB, normal, and pneumonia patients were 7, 2, and 18 respectively, and the
maximum ages were 85, 83, and 86, respectively. In each group of cases, there are minors (under 18
years old) and elderly (over 60 years old), which means that the data contains immature young lungs,
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Fig. 6. CT slices of an ATB patient in the testing data. (a) Original slices and (b) abnormalities detected by the software.

Fig. 7. ROC curve for ATB vs no-ATB.

Table 4
Software performance on testing data

Evaluation index AUC Accuracy SS SP PPV NPV

Result 0.980 0.968 0.964 0.971 0.971 0.964
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Fig. 8. Misdiagnosed CT images of normal and pneumonia patients by U-Net: (a) stomach; (b) intestinal; (c) sternal angle
and trachea; (d) left pulmonary vascular cross section; (e) thoracic aorta; (f) right humerus; (g) metal clothing in vitro; (h)
right-sided pneumonia lesion.

which may be smaller than the lungs of adults, while the elderly may have atrophy and other factors
leading to smaller lungs. The factor of age has little effect on the AI detection software.

In contrast to previous AI research in medical imaging diagnosis, in the development process, we
adopted the recommendations of radiologists. Radiologists in the CT room need to handle patients
with different diseases during their daily work, which requires AI to identify diseases like radiologists.
Accordingly, the AI detection software of this study first tries to distinguish ATB, pneumonia, and
normal CTs. Unlike chest X-rays, CT diagnosis requires several consecutive slices to be inspected.
Therefore, when diagnosing ATB patients, image processing methods are proposed in this study that
can effectively convert the 2D ROI in each CT slice into a 3D OOI, which has been described previously
in Section 2.2.2. The recommendations of doctors and radiologists were a tremendous help to our image
processing method for AI diagnosis of ATB. The AI detection software in this paper not only relies
on neural networks to make the diagnosis, but also lays the foundation for adding other diseases later
and for applying ATB detection software at a clinic in the future.

In this paper, U-Net is used to perform image segmentation prediction on the testing data. As a
result, we found that some slices in normal and pneumonia patients in the testing data were misjudged
as ATB regions, as shown in Fig. 8. The causes of misdiagnosis include: stomach, intestine, sternal
angle and trachea, pulmonary blood vessels, thoracic aorta, humerus, wearing of metal clothes, and
pneumonia lesions mistaken for ATB lesions. Therefore, we adopted an image processing method to
eliminate the ATB lesion areas incorrectly predicted by U-Net in the CT image.

Four cases of misdiagnosis are shown in Fig. 9 (a), (b): Two cases of pneumonia were misdiagnosed
as ATB, because the two cases of pneumonia lesions affected more than two lung lobes. The other 2
cases of normal patients were misdiagnosed as ATB slices, as shown in Fig. 9 (c) and (d). Figure 9 (c)
shows how the AI software incorrectly responded to the heightened cross section of the blood vessels
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Fig. 9. AI detection software was used to diagnose images of normal and pneumonia patients in the testing data (a) right-sided
pneumonia lesion; (b) right-sided pneumonia lesion; (c) images of right humeral head and right lung in normal patient; (d)
normal thoracic aortic images.

in the right lung and the right humerus. Density shadows are misdiagnosed as ATB lesions; Fig. 9 (d)
shows that the software mistakes a high-density shadow of a normal thoracic aorta as an ATB lesion.

Figure 10 shows cases missed by the AI detection software. We found that five cases of ATB
were missed. After further analysis, we found that the common imaging characteristics of the five
missed patients were small and atypical lesions. The ATB lesions in some slices were relatively



L. Ma et al. / Developing and verifying automatic detection 949

Fig. 10. CT slices of an ATB patient missed by the software.

small and not predicted by U-Net. The ATB lesions were predicted in some slices; however, less
than 4 consecutive slices with predicted ATB lesions were generated by the software, so the software
eventually misdiagnosed the patient, as shown in Fig. 10.

The AI detection software developed in this study has following advantages and potentially clinical
application value. First, ATB has a high incidence in resource-poor areas and areas where people’s
quality of life is not high. These areas are often lacking radiologists [26]. The accuracy, sensitivity, and
specificity of the AI software developed in this paper can help to reduce the workload of radiologists
in remote areas. Second, this AI detection software has laid a foundation for distinguishing ATB from
other lung diseases in future research. Third, image processing methods have been added to effectively
convert a 2-D region of interest into a 3-D object of interest for a CT scan, see Section 2.2.2. This
method can delete false positive slices and effectively improve the accuracy of diagnosis.

This study also has limitations. First, our training data does not contain other diseases and abnor-
malities, such as lung abscess, obsolete pulmonary tuberculosis, lung tumors, multiple nodules and
other lung diseases. We plan to add other lung diseases in the next step to widen the scope of the
algorithm. Second, because this study assumes that more than four consecutive lesion slices define an
ATB patient, this may cause lesions of less than two centimeter in size to be missed (CT slice thickness
is 5 mm); however, considering that most ATB lesions are larger, the impact is relatively small.

5. Conclusion and future work

This study successfully developed an AI software tool for automatic detection of ATB in chest CT.
The software has a high performance, with an AUC value of 0.980. The accuracy is 0.968, the SS is
0.964, the SP is 0.971, the PPV is 0.971, and the NPV is 0.964. In summary, our study shows that
using AI detection software can not only diagnose ATB patients, and distinguish between ATB and
non-ATB (normal and pneumonia), but also simplify the diagnosis process for doctors. Therefore, this
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AI detection software lays a foundation for the application of AI in CT diagnosis of ATB in clinical
medicine.

In order to improve the completeness and practicality of this software, future research should continue
adding training data for other lung diseases. At present, drug-resistant tuberculosis has become a
problem. In our next study, we will use CT data of drug-resistant tuberculosis to train and develop an
AI detection system based on deep learning to predict drug-resistant tuberculosis in CT images.
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Abstract. Recently, COVID-19 has spread in more than 100 countries and regions around the world, raising grave global
concerns. COVID-19 transmits mainly through respiratory droplets and close contacts, causing cluster infections. The symp-
toms are dominantly fever, fatigue, and dry cough, and can be complicated with tiredness, sore throat, and headache. A few
patients have symptoms such as stuffy nose, runny nose, and diarrhea. The severe disease can progress rapidly into the acute
respiratory distress syndrome (ARDS). Reverse transcription polymerase chain reaction (RT-PCR) and Next-generation
sequencing (NGS) are the gold standard for diagnosing COVID-19. Chest imaging is used for cross validation. Chest CT is
highly recommended as the preferred imaging diagnosis method for COVID-19 due to its high density and high spatial reso-
lution. The common CT manifestation of COVID-19 includes multiple segmental ground glass opacities (GGOs) distributed
dominantly in extrapulmonary/subpleural zones and along bronchovascular bundles with crazy paving sign and interlob-
ular septal thickening and consolidation. Pleural effusion or mediastinal lymphadenopathy is rarely seen. In CT imaging,
COVID-19 manifests differently in its various stages including the early stage, the progression (consolidation) stage, and the
absorption stage. In its early stage, it manifests as scattered flaky GGOs in various sizes, dominated by peripheral pulmonary
zone/subpleural distributions. In the progression state, GGOs increase in number and/or size, and lung consolidations may
become visible. The main manifestation in the absorption stage is interstitial change of both lungs, such as fibrous cords and
reticular opacities. Differentiation between COVID-19 pneumonia and other viral pneumonias are also analyzed. Thus, CT
examination can help reduce false negatives of nucleic acid tests.

Keywords: 2019-novel Coronaviruses (2019-nCoV), SARS-CoV-2, COVID-19, Computed Tomography (CT), ground glass
opacity (GGO), differentiation of pneumonia

1. Background and current situation of the epidemics

Since December 2019, an epidemic of pneumonia of unknown cause has spread rapidly to the whole
Hubei Province, the whole country, and multiple regions and countries around the world. The pathogen
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of this pneumonia with unknown cause was isolated successfully by Chinese scientists on January 7th,
2020 and confirmed to be a newly-discovered novel coronavirus through whole-genome sequencing.
The Coronaviridae Study Group (CSG) of the International Committee on Taxonomy of Viruses,
World Health Organization (WHO), has assessed the placement of the human pathogen, tentatively
named 2019-nCoV, within the Coronaviridae. CSG recognizes this virus as forming a sister clade to
the prototype human and bat severe acute respiratory syndrome coronaviruses (SARS-CoVs) of the
species Severe acute respiratory syndrome-related coronavirus, and designates it as SARS-CoV-2.
Sequencing was completed for the virus on January 10th, 2020. China then shared the data globally
(https://www.gisaid.org/), and shortly after a diagnostic method based on fluorescence quantitative
RT-PCR was developed for 2019-nCov [1]. The epidemic of novel coronavirus pneumonia in China
has become a “Public Health Emergency of International Concern (PHEIC)”, as declared by Tedros
Adhanom Ghebreyesus, director general of WHO, in Geneva, on January 30th, 2020. The National
Health Commission issued Announcement No. 1 on January 20th, 2020, listing novel coronavirus
pneumonia as one of the Statutory Class-B Infectious Diseases, for which Class-A Measures would
be adopted [2]. On February 11th, 2020, WHO named novel coronavirus pneumonia as “COVID-19”,
with CO standing for corona, VI for virus, and D for disease.

As of April 5th, 2020, there are 1,299 existing confirmed cases (including 265 severe cases), 77,078
accumulative cases cured and discharged, 3,331 accumulative deaths, 81,708 accumulative confirmed
cases, and 88 existing suspected cases, as reported by 31 provinces (autonomous regions or municipal-
ities directly under the central government) and Xinjiang Production and Construction Corps in China.
Globally, the epidemic is rampant in the Western Pacific, Europe, Southeastern Asia, the Middle East,
the Americas, and Africa, manifesting most severely in USA, Spain, and Italy, while the number of
infected people continues to rise. The global impact by the epidemic is far greater than that induced
by SARS in 2003 [3].

2. Etiological features and pathogenic mechanism

The literature has attributed the outbreak of the COVID-19 Pneumonia to a place called Huanan
Seafood Market in Wuhan City, Hubei Province, China, so far, where live animals such as poultry,
bats, marmots and other wild animals are sold, suggesting the possible transmission of pathogens from
animals to humans [4]. The present whole-genome phylogenetic analysis on 2019-nCoV shows that
it has a much closer phylogenetic relationship to the SARS-like coronaviruses bat-SL-CoV ZC45 and
bat-SL-CoV ZXC21 from Rhinolophus Sinicus (a species of Chinese Horseshoe Bat) [5–7]. Therefore,
bats are considered the possible main host of 2019-nCoV [8]. It has not been defined, however, whether
2019-nCoV pneumonia is transmitted through Rhinolophus Sinicus directly or via an intermediate host.
Most scholars believe that Rhinolophus Sinicus is the most primitive host of the 2019-nCoV, and that
the virus might be spread to humans through a yet unknown animal host, possibly pangolin [9, 10].
Recently, 149 mutational sites in 2019-nCoV have been detected, as suggested by the most recent
Chinese research. The virus has evolved into two subtypes, L- and S-subtype, with the latter having
stronger aggressiveness and infectiousness [11].

The results of Coronavirus gene sequencing performed by Brazilian researchers for the first
confirmed case in Brazil, on February 26th, showed three differences in the Novel Coronavirus
(Brazil/SPBR1/2020) compared with the virus gene (Hu-1 Reference Strain) published in Wuhan;
that is to say, mutations might have occurred in the virus during its transmission [12].

Corona viruses belong to the subfamily of Ortho coronavirus under the family of Coronaviridae
and catalog of Nidovirales. This subfamily comprises four attributes including Alpha-coronavirus (�),
Beta-coronavirus (�), Gamma-coronavirus (�), and Delta-coronavirus (δ). Attributes � and � tend
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to infect mammals, and contain seven species of coronavirus causing disease in humans, including
HCoV-OC43, HCoV-229E, SARS-CoV, HCoV-NL63, HCoV-HKU1, MERS-CoV, and SARS-CoV-2
(2019-nCoV), while attributes � and δ infect mainly birds [13]. 2019-nCoV, with a genome structure
typical of coronavirus, is a positive single-strand RNA virus particle capsulated in a diameter of about
60–140 nm and a size of 30 kb. With spike spines on its capsule, the whole virus looks like a corona
[14–16].

The genome of coronavirus usually encodes four structural proteins, including spike protein (S),
membrane protein (M), envelope protein (E), and nucleocapsid protein (N). Some coronaviruses of
attribute � also encode hemagglutinin esterase protein (HE). S protein mediates the attachment of the
virus to a receptor on a cellular surface and is one of the key factors achieving effective interpersonal
transmission. Protein S, belonging to Type-I transmembrane glycoprotein, consists of two domains: a
receptor-binding subunit (S1) and a membrane fusion subunit (S2). In the process of virus invasion, S1
is responsible for binding with the receptor on the surface of the host cell followed by viral attachment,
and S2 is responsible for fusing the cell membrane of the host and viral envelope, making the virus
genome enter the host cell to form a stable binding compound. The whole process of infection consists
of four steps: adsorption invasion, gene synthesis, packaging of the mature virus, and virus release [17,
18]. Through the pathway of S protein binding ACE2 receptor in human cells, 2019-nCoV constitutes
a major risk for public health due to human transmission [6]. In addition, ACE2 is mainly situated
at alveolar Type II epithelial cells in the lower lungs, so 2019-nCoV is more likely to cause severe
diseases such as pneumonia.

3. Epidemiological features

Most of the early patients infected with COVID-19 pneumonia were in Wuhan, indicating a local
outbreak [1]. Later, most of the patients had been to Wuhan or in close contact with patients coming
from Wuhan [19–21]. Meanwhile, confirmed cases have appeared in other regions of China and have
been reported in many countries and regions outside of China [22]. Infection of medical staff and
family clusters has shown that SARS-CoV-2 spreads in population clusters [23] with stronger infec-
tiousness than SARS-CoV or MERS-CoV [19], and that the epidemic has developed into community
transmission. The epidemic has expanded rapidly and spread from Hubei Province to other areas of
China with the immigration of infected people, while the number of cases increased gradually all over
the world.

The main source of infection is the population of COVID-19 patients, including asymptomatic
infected people. Identification of the transmission chain and subsequent tracing of the contacts become
more complex when several infected people seem asymptomatic or only mildly symptomatic [24].
The main routes of transmission include respiratory droplets and close contact. Transmission via
aerosols seems possible in case of prolonged exposure to aerosols in high concentration in a rel-
atively closed environment. SARS-CoV-2 has been isolated from urine and feces of patients in
multiple regions; therefore, transmission via aerosol or contact due to environmental contamina-
tion should be considered [14, 20]. Mother-to-child transmission need to be confirmed, as well
as other transmissions [10]. The latent period lasts 1–14 days, mostly 3–7 days. The longest
reported latent period is 24 days [20], although in an individual case. People are generally sus-
ceptible, and patients are concentrated in a population aged between 30 and 79 years [19] and
are correlated with exposure to viral load. Conditions after infection are more serious in the older
patients and those with underlying diseases, while severe diseases seem rare among children and
infants [22, 25].
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4. Clinical manifestation and laboratory examination

The symptoms of SARS-CoV-2 infection seem to be non-specific, as far as clinical manifestations
are being concerned. They may be very similar to influenza and manifest mainly in fever, fatigue, dry
cough, sore throat, headache, and occasionally nasal congestion, runny nose, and diarrhea in a few
patients. Clinically, cases can be classified into mild, common, severe, and critical. Dyspnea and/or
hypoxemia occur(s) usually in severe cases within one week. Serious cases can progress rapidly
into acute respiratory distress syndrome (ARDS), septic shock, refractory metabolic acidosis, and
coagulation dysfunction. It is noteworthy that patients with severe or critical diseases might manifest
only moderate to low fever, or even no obvious fever during the course of the disease. Patients with
mild disease may manifest only low fever and mild fatigue without manifestations of pulmonary
inflammation and can recover after one week in most cases.

RNA, the hereditary substance of the virus, may become detectable post systemic infection of
SARS-CoV-2. Nucleic acid detection aims to find RNA of SARS-CoV-2 in samples from the patient,
so it is also the “Golden Standard” and an important approach in clinical diagnosis. There are mainly
two methods in detecting nucleic acids of SARS-CoV-2, including NGS (Next-generation sequencing)
and reverse transcription polymerase chain reaction (RT-PCR) [26]. NGS, the next generation of
sequencing technology, was the first method that succeeded in detecting the new pathogen at the initial
stage of the epidemic and defined soon the sequences of nucleic acids of SARS-CoV-2. The simplest
and fastest strategy for detection will be undoubtedly the targeted fluorescence quantitative RT-PCR
using primer probes designed for the conserved domains of the nucleic acid sequence that have been
defined for the virus. This method involves a proliferation of specific RNA sequences in the sample
post to their reverse transcription. Theoretically, the quantity of genome segments of the virus post to
each amplification will be multiplied, and the visual detection will become feasible when segments
of the targeted genes reach a certain number after more than 30 amplifications. Targets detected for
nucleic acids of SARS-CoV-2 consist of three conserved sequences in the viral genome, including
open reading frame 1ab (ORF1ab), nucleocapsid protein (N), and Envelope gene [27].

According to the Laboratory Guidelines for Novel Coronavirus Infections issued by the China
Health Commission [28], the prerequisite for a laboratory confirmation of a positive case should be the
positiveness of real-time fluorescence RT-PCR results in two specific targeted genes including ORF1ab
and gene N, or single-target positiveness of RT-PCR either in two types of specimens simultaneously
or in two separately-sampled specimens of the same category. Re-sampling and re-test are needed,
in case of a positiveness of a single target. The test should be performed at least for ORF1ab region,
the most conserved and the most specific region of 2019-nCoV, if only one target gene is detectable
because of limited availability of the selected laboratory kit. COVID-19 cannot be ruled out, even if
there is a negative result. Factors inducing false negative should be excluded, such as poor quality of
the specimen (e.g., specimen from respiratory tract such as oropharynx), specimens collected too early
or too late, incorrect conservation, transportation or treatment, reasons of the technology per se (e.g.,
viral mutation, PCR inhibition) [29].

The leukocyte count in peripheral blood is normal or decreased in early stage, with a low lympho-
cyte count, especially low numbers of T lymphocytes, which are in an over-activated state that can
cause severe immune damage in patients [30]. C-reactive protein (CRP) and ESR increase in most
patients, and procalcitonin remains normal. In quite a few patients, increase of liver enzymes, muscle
enzymes, and myoglobin are observed. In severe cases, D-dimer increases and lymphocytes in periph-
eral blood decrease progressively. SARS-CoV-2 can be positive in specimens including nasopharynx
swab, sputum, secretion frp, secretion of lower respiratory tract, blood, urine, and feces. Importantly,
symptoms last longer in cases of SARS-CoV-2 than in most cases of non-complicated influenza [31,
32]. Despite non-typical symptoms occurring in a few cases, fever is still the typical symptom of a
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SARS-CoV-2 infection. Patients with underlying chronic diseases generally have prolonged courses,
severer conditions, more rapid progressions, and worse prognoses [21, 31].

5. Pathological and radiological manifestations

The autopsy of the first death due to COVID-19 in China showed obvious lung injuries, with patchy
grayish lesions and dark red hemorrhage discernable by the naked eye. The texture of the lung tissue
became hard, losing the sponginess inherent to lungs. A large amount of thick secretions could be seen
escaping from the section of alveoli, and fiber cords were observable [33].

Histological examination: under the light microscope, pulmonary interstitial blood vessels were
congested and edematous, with inflammatory infiltration of lymphocytes and monocytes as well as
clear thrombosis in the vessels. Serous fluid, fibrin exudate, and formation of hyaline membrane were
observed in the alveolus cavities. The exudate cells were mainly monocytes and macrophages, and
multinucleated giant cells were also common. In addition, atypical enlarged alveolar cells could be
seen, in which the atypical enlarged alveolar cells had large nuclei, amphiphilic cytoplasmic granules
and obvious nucleoli, showing viral cytopathic-like changes [30]. Some alveolar epithelial cells were
exfoliated, with inclusion bodies inside. Partial alveolar exudate organization and interstitial fibrosis
occurs. Local hemorrhage, necrosis, and hemorrhagic infarction might occur in lung tissue. Part of
the mucous epithelium of intrapulmonary bronchi was exfoliated, with mucus and mucus thrombus
observable in the lumen. A few alveoli were overinflated, with broken alveoli septum or formation of
cysts. Under an electron microscope, coronavirus particles could be seen in the cytoplasm of bronchial
epithelial cells and Type II alveolar epithelial cells. Immunohistochemistry staining proved the presence
of SARS-CoV-2 antigen in some of the alveolar epithelial cells and macrophages, and SARS-CoV-2
nucleic acid was positive as shown by RT-PCR [14]. Local pathological changes suggested a high
similarity of COVID-19 with SARS-CoV and MERS-CoV infection.

DR imaging is a convenient and fast examination method for patients with lung diseases, but low
sensitivity and specificity due to the influence of an overlap of anatomic structure on the observation
of lesions make it easy to miss the image manifestation of COVID-19. COVID-19 usually has no
abnormal change or manifests as bronchitis in the early stage. In the progression stage, it may manifest
limited or multiple segmental patchy opacities in the middle and peripheral zones/subpleural areas
of both lungs. In severe patients, multiple consolidations and ground-glass opacities (GGO) are seen
in both lungs, and some of them are fused into large consolidations, with a small amount of pleural
effusion or pleural thickening. The progression of lesions into the critical illness may manifest multiple
diffusive consolidations in both lungs, appearing “white lungs” with a small amount of pleural effusion.
Manifestations in the absorption stage include dissipation or decreased density of the previous lesions,
or evolution into fiber or cord-like opacities. Therefore, DR is suitable for only primary hospitals
without CT, or for severe or critically severe patients [34].

It has been reported that abnormal CT images may occur in 60% to 93% of the cases prior to a positive
nucleic acid antibody test (or both occur simultaneously) [35]. The sensitivity of chest CT is greater
than that of RT-PCR, which supports the use of chest CT to screen for COVD-19, especially when
patients consistent with clinical and epidemiological profiles of COVD-19 but negative in RT-PCR
tests are screened [36]. Therefore, chest CT scans with an appropriate scanning plan and parameters
for COVID-19 patients will have a synergistic diagnostic effect in evaluating patients. The present
consensus about COVID-19 among Chinese radiological experts is that high-resolution CT (HRCT)
should be the main modality in screening and diagnosing this disease, with 16 layers or above, routine
dosage, plain scans, a reconstruction layer thickness of not more than 3 mm and a layer thickness of
1 mm [37].
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Fig. 1. Example images show a 52-year male patient who had onset of fever up to 39.1◦ on January 26th, 2020, complicated
with fatigue and dry cough with a positive nucleic acid test. He underwent the first CT scan on January 27th, 2020, day 2
after the onset, which showed in the upper right lung a patchy GGO containing thickened blood vessels and air bronchogram.
Small patches of GGOs are scattered in the middle lobe of the right lung.

The CT manifestations of COVID-19 depend on a patient’s age, immune status, disease stage at the
time of scanning, underlying diseases, and drug intervention. Main radiological features include: (1)
distribution: dominantly in peripheral pulmonary/subpleural bands, and distributed along bronchovas-
cular bundles, (2) quantity: mostly three or more lesions, and rarely individual or pairs, (3) shape:
patchy, bulky, or nodular, or in a shape of blocks, cellular texture, or reticular, (4) density: mostly
uneven, manifesting GGOs, signs of paving stone, thickened interlobular septum with consolidation,
and thickened bronchial wall, and (5) various complicated symptoms, but rare signs of pleural effusion
or mediastinal lymphadenopathy.

According to guidelines issued by the Radiology Branch of the Chinese Medical Association (Imag-
ing Diagnostic Guideline for Novel Coronavirus Pneumonia - Edition 2020), the Infectious Disease
Group of the Chinese Society of Radiology (Adjuvant Imaging Diagnostic Guideline for Novel Coro-
navirus Pneumonia), the Project Group of Prevention and Control of Novel Coronavirus Pneumonia
in Zhongnan Hospital of Wuhan University (Rapid Guideline for Diagnosis and Treatment of Novel
Coronavirus Pneumonia (SARS-CoV-2)), as well as domestic and international literature, CT mani-
festations for COVID-19 can be classified into three stages. Specifically, based on the onset timepoint
and the body’s response to the virus, manifestations can be classified into the following three stages:

5.1. Early stage

This stage lasts 1–3 days after the onset of clinical manifestations, including fever, and dry cough.
The pathological changes in this stage include dilation and congestion of alveolar septal capillaries,
exudate in alveolar cavity, and interstitial edema in interlobular septum. CT scans manifest single
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Fig. 2. Images of the same patient as shown by Fig. 1, which manifest an obviously increased number of lesions with
progression in both lungs in CT scans on February 3rd, 2020, day 9 after the onset. Multiple large patchy GGOs appear in
both lungs with consolidations containing air bronchogram inside and obvious thickening of interlobular septum.

or multiple scattered patchy or bulky GGOs, separated by lobular septum in honeycomb or reticular
thickening [38–44] (Fig. 1).

Generally, lesions in the early stage do not involve an entire pulmonary section. A patient without
any other pulmonary disease will not show lymphadenectasis in the mediastinum or hilum, pleural
thickening, or pleural effusion. The pathological changes are considered to be correlated with patho-
logical mechanisms including the vulnerability of terminal bronchioles and the pulmonary parenchyma
around the respiratory bronchioles for viral pneumonia in the early stage, subsequent involvement of
the whole pulmonary lobule, and diffusive lobular injuries.

5.2. Progressive stage

This stage refers to day 3–14 after the onset of clinical manifestations. The pathological feature
during this stage is that the interstitial vascular dilation seems more obvious than before, and the exu-
date containing a large number of cells accumulates in the alveolus cavity, both of which will further
aggravate the alveolus and interstitial edema. Cellulosic exudation enters every alveolus through inter-
cellular connection to form a fusion state. CT scans show faded GGOs and consolidations appearing
more distributed in comparison with the early stage and maintaining the dominance in peripheral pul-
monary/subpleural distribution, with enlargement and fusion of some lesions invading subsequently
multiple pulmonary lobes. The lesions are irregular, wedge-shaped or fan-shaped, with unclear borders,
scattered in multiple foci or even diffuse, showing bilateral asymmetry. Opacities of soft tissues are
observed, including broncho-vascular bundle thickening or subpleural multifocal pulmonary consoli-
dation, showing rapid progression and changes, with great morphological variation within short-term
reexamination. This can be complicated with tissue necrosis to form small cavities, and air bronchogram
is commonly seen. It may also be accompanied by thickening of interlobular septum, manifesting
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Fig. 3. Images of the same patient as shown by Figs. 1 and 2. CT scans on February 21st, 2020, day 24 after onset (during
the absorption stage), show a gradual decrease and absorption of large patches of GGOs in both lungs, which are scattered
with cord-like, reticulate and patchy opacities, with obvious thickening of interlobular septum.

“paving stone” sign, or complicated with fibrotic focus. Some cases manifest GGOs, usually without
pleural effusion. Very few cases are complicated with lymphadenectasis in mediastinum and hilum.
The disease in the progression stage often evolves abruptly and needs vigorous treatment. One should
be alert of the occurrence of acute respiratory distress syndrome (ARDS) (Fig. 2).

If the patient does not receive effective treatment in time, pulmonary consolidation may occur on
basis of the existing GGOs, in addition to the enlargement of GGOs and increase of their number. The
main pathological feature in this stage is the cellulosic exudation in alveolar cavities and the gradual
disappearance of capillary hyperemia of alveolar walls. Diffusive lesions in both lungs are observed in
CT scans, and a few patients manifest “white lungs” [45, 46]. The lesions may increase by 50% in their
sizes within 48 hours, dominated by consolidations and complicated with GGO, air bronchogram, and
multiple cord-like opacities, which is called clinically severe pneumonia and may develop clinically
into the critically severe type if the disease keeps progressing.

5.3. Absorption stage

This stage refers to the 2-3 weeks’ time period after the onset of clinical symptoms. The area of
lesions shrinks after effective treatment. CT scans manifest patchy consolidations or cord-like opacities.
The exudates undergo absorption or organization by the body over time with decreased density, and
the pulmonary consolidations dissipate gradually. Along with the gradual absorption of the lesions,
reticulate interlobular septal thickening is observable, with thickened and twisted bronchial walls in
the image of cord-like changes, and a few scattered patchy high-density opacities being visible [38–46]
(Fig. 3).
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Fig. 4. Chest CT scans on March 20th, 2020, for the same patient shown by Figs. 1–3, after treatment, showing obvious
absorption of lesions (decreased lesions with partial fibrosis). After admission, the patient received antiviral and atomizing
therapies, but symptoms aggravated with repeated fever, cough, expectoration, and gasp. A written notice of danger was
given on February 2nd 2020, and the patient was given oxygen inhalation, continuous ECG monitoring, finger pulse oxygen
monitoring, anti-infection treatment, anti-virus therapy, atomization of recombinant human interferon �2b and intravenous
injection of human immunoglobulin to improve immunity, as well as symptomatic treatments to reduce inflammation.
The symptoms improved after treatment. Chest CT scans on March 20th showed the obvious absorption of the lesions.
Re-test of nucleic acid of novel coronavirus after an interval of 24 hours was negative. The patient was discharged in
agreement after consulting with the Municipal Novel Coronavirus Pneumonia Expert Group of the 4th People’s Hospital of
Nanning City.

The patient of Fig. 3 had a follow-up chest CT examination four weeks later. The images showed that
the patient’s symptoms significantly improved after treatment with the obvious absorption of lesions
(Fig. 4).

The characteristic feature of COVID-19 is GGO, which is a radiological concept manifesting
a minor increase of density and a cloudy opacity, but with observable textures of blood ves-
sels and bronchi inside [47]. GGO is a non-specific term and highly suggests that the disease of
lung tissue is active or reversible. Lesions of GGOs in lungs of patients with COVID-19 decrease
gradually over time, while fibrous cord-like opacities increase gradually, which becomes the most
common radiological manifestation. Research has shown that the most obvious changes of intra-
pulmonary lesions are observable during day 6–9 after admission in 75.0% of the patients, and
relatively obvious absorption can be seen during day 10–14 of the hospital stay in 76.9% of the
patients [48]. In addition, some research work implies that the dandelion fruit sign is the charac-
teristic change in COVID-19 patients [49]. The longer the duration of a SARS-CoV-2 infection,
the more changes can be seen in CT images [50]. The radiological changes in late sequela remain
unknown [51].
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Fig. 5. Example CT images of a 63-year-old male patient diagnosed with H7N9 avian pneumonia. Top row shows chest CT
scans taken on January 17th, 2014, day 11 after the onset, in the progression phase. CT scans show patches of ground glass
opacities in the upper right lung and the upper left lung, dominantly distributed in the subpleural zone. Consolidations can
be seen in the lower lobes of both lungs, with air bronchogram inside dominantly at the lower right lung. Bottom row shows
chest CT taken on January 24th, 2014, day 18 after the onset during the absorption period. CT shows the obvious absorption
of ground glass opacities and consolidations in both lungs, which have been dominantly interstitial changes and small patches
of consolidations.

6. Differential diagnosis

6.1. Differentiation between COVID-19 pneumonia and other viral pneumonias

Other viral pneumonia manifest generally diffuse large patches of GGOs in both lungs with thick-
ening of interlobular septum, which makes it hard to differentiate them from COVID-19 pneumonia
in images and clinically. Definite epidemic history provides suggestive efficacy for differentiation for
all kinds of viral pneumonias, especially COVID-19, while confirmed diagnosis should be based on
etiological detection.

6.1.1. Differentiation with pneumonia induced by SARS and MERS
Pathogens for SARS, MERS, and COVID-19 all belong to the coronavirus family, with similar

pathogenic mechanisms among them all. Given the diversity in imaging, without obvious specificity, it
is hard to differentiate merely based on imaging. The incorporation of epidemic features and pathogenic
tests may facilitate the discrimination.

6.1.2. Differentiation with pneumonia by avian influenza virus
Avian influenza virus pneumonia in human is an infectious disease of the acute respiratory tract

induced by several subtypes of the avian influenza virus such as H7N9 and H5N1. It spreads mainly
through contact with poultry, in contrast to the contamination through wild animals for the novel
coronavirus pneumonia showing an obvious human-human transmission. As for imaging, lesions seem
wider in lungs for avian influenza pneumonia in human with severe pulmonary consolidation, although
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both pneumonias manifest patches or large sheets of ground glass opacities and consolidations in the
lung without major difference (Fig. 5). Therefore, some difficulties exist in differentiating them.

6.2. Differentiation with mycoplasma pneumonia

Mycoplasma pneumonia, observed commonly in children and young people, is characterized clini-
cally by paroxysmal and irritant dry cough and by the chest X-ray showing either interstitial infiltration
(e.g., increased, thickened or gridded lung markings) or consolidations of segments or lobes mani-
festing patchy or fan-shaped infiltration. Imaging of CT scans is characterized by thickening of the
bronchial wall, centrilobular nodules, consolidations distributed along lobes, segments or subsegments
of the lung, and enlargement of mediastinal lymph nodes. In comparison, enlarged mediastinal lymph
nodes are rarely seen in novel coronavirus pneumonia. Positiveness in mycoplasma antibody can be
observed in laboratory tests, as a response to Macrolides antibiotics. A differentiation can be made,
therefore, based on clinical features and serological examination.

6.3. Differentiation between COVID-19 pneumonia and bacterial pneumonia

Bacterial pneumonia often manifests shivering, high fever, and bloody or rusty expectoration, with
laboratory tests showing an increase of leukocytes and neutrophils. Imaging usually shows small
patches of consolidations distributed along the bronchi and even fused into the distribution along sub-
segments, segments, or lobes, which show good response to antibiotics and are easily differentiated
with COVID-19 pneumonia.

7. Summary

Currently, detection of viral nucleic acid is still the gold standard for diagnosing COVID-19 [52],
although it has high specificity but low sensitivity. Temporal difference exists in clinical manifestations,
between nucleic acid detection and CT imaging during the early stage of COVID-19, which might be
the critical factor for misdiagnosing the disease, and a factor for transmission of the disease [53]. A
cross validation should be performed by clinicians, based on clinical manifestations and CT imaging,
to make the clinical diagnosis of COVID.

It is also very likely that outbreaks of new diseases caused by coronavirus might occur in the future,
given our limited understanding of SARS-CoV-2, climate and ecological changes possibly affecting
the course of outbreaks, and continuing interactions between humans and animals. Therefore, future
research should focus on developing effective drugs and vaccines through strengthened international
cooperation to investigate and contain infectious diseases caused by coronavirus as a vital public health
issue [54].
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