
 1

Clinical Language Engineering
Workbench (CLEW)

User Guidance Document

August 2019

 2

Contents
CLEW Team Members ... 3

List of Abbreviations .. 4

Introduction ... 5

System Architecture .. 5

Description of Services ... 6

The CLEW User Interface .. 6

NLP Basics.. 6

NLP Tools Catalog ... 6

NLP Web Services .. 6

LAPPS Grid .. 7

CDC Cancer Pathology Clinical Entity Recognizer (CER) Service ... 7

CDC’s Cancer Pathology Coding Service .. 7

National Center for Biomedical Ontology (NCBO) BioPortal-ETHER Service 7

Ontology Annotation .. 7

Processing Steps.. 7

Source Code and Instructions ... 9

CLEW ... 9

LAPPS Grid .. 9

CDC Service Installation Instructions .. 10

HLA Post-Processors for LAPPS ... 10

CER Pipelines ... 11

CER Server ... 12

Cancer Pathology Coding Service .. 14

Feature Library .. 18

Issues and Possible Solutions.. 20

The findings and conclusions in this report are those of the authors and do not necessarily represent the official
position of the author’s agencies (CDC, FDA). The authors have no conflicts of interest related to this work to
disclose.

 3

CLEW Team Members
Team Member Organizations Team Members
Center for Biologics Evaluation and Researcher
Food and Drug Administration

Taxiarchis Botsis – Project Co-Lead
Mark Walderhaug – Project Co-Lead
Kory Kreimeyer
Abhishek Pandey
Matthew Foster
Richard A. Forshee

Cancer Surveillance Branch
Division of Cancer Prevention and Control
Centers for Disease Control and Prevention

Sandy Jones – Project Co-Lead
Joe Rogers
Wendy Blumenthal
Temitope Alimi

Northrop Grumman Steve Campbell – Project Manager
Fred Sieling – Project Manager
Marcelo Caldas
Sanjeev Baral

Health Language Analytics Global
(sub-contract with Northrop Grumman)

Jon Patrick

Engility Corporation Wei Chen
Guangfan Zhang
Wei Wang

Vassar College
(sub-contract with Northrop Grumman)

Keith Suderman

 4

List of Abbreviations
API ...Application Programming Interface
ASPE Assistant Secretary for Planning and Evaluation
CDCCenters for Disease Control and Prevention
CER ..Clinical Entity Recognition
CLEWClinical Language Engineering Workbench
CPU ..Central Processing Unit
CRF ..Conditional Random Fields
cTAKESclinical Text Analysis and Knowledge Extraction System
GB ..Gigabyte
RAMRandom Access Memory
ETHEREvent-based Text-mining of Health Electronic Records
eMaRC PlusElectronic Mapping, Reporting, and Coding Plus
FDA..Food and Drug Administration
HLA Health Language Analytics Global
HTMLHypertext Markup Language
ICD-O-3International Classification of Diseases for Oncology, 3rd Edition
IIS ...Internet Information Services
LAPPS GridLanguage Applications Grid
LM..Language Model
MS SQLMicrosoft SQL
NLP ..Natural Language Processing
NLTK Natural Language Toolkit
NCBONational Center for Biomedical Ontology
PCORPatient-Centered Outcomes Research
PCORnetNational Patient-Centered Clinical Research Network
PCORTFPatient-Centered Outcomes Research Trust Fund
POS ..Part of Speech
RESTfulRepresentational State Transfer

 5

Introduction
This document explains how to install and use the Clinical Language Engineering Workbench
(CLEW) and products developed in the Centers for Disease Control and Prevention (CDC) and
the Food and Drug Administration (FDA) pilots. They were completed as part of the Assistant
Secretary for Planning and Evaluation (ASPE) Patient-Centered Outcomes Research Trust Fund
(PCORTF) Natural Language Processing (NLP) Workbench Web Services project.

The goals were to:

• Develop a generalized NLP web service to convert unstructured clinical information to
structured and standardized coded data.

• Pilot NLP Workbench Web Services using cancer data and blood products and vaccine
surveillance data.

• Update the NLP Workbench Web Services based on pilot results and provide technical
documentation that describes the requirements for expansion of the NLP Workbench
Web Services to meet additional domain needs.

The primary project objective was to provide a mechanism to “translate” free-text data into a
structured form researchers, federal agencies, and public health agencies can use for surveillance
and research purposes.

The CLEW is an open platform environment that uses different techniques to resolve specific use
cases. It provides clinical NLP services and open-source NLP and machine learning tools to
develop, experiment with, and refine clinical NLP solutions. The infrastructure is created for
sharing new tools with the wider clinical NLP community, assembling NLP tools into a
processing workflow, and generating training files for feeding machine learning algorithms to
develop language models.

During this project, researchers found that good, focused corpora for the given problem are
required to achieve accuracy when using NLP, especially statistical NLP and machine learning
models.

System Architecture
This project is a workbench that allows users with different levels of knowledge about NLP
practices can learn and discover solutions, develop their own solutions, or use shared services or
pipelines. The CLEW uses microservices as a core concept to develop a service-oriented
architecture that is modular and flexible to allow for future expansion and customization to meet
different needs. Figure 1 below describes the CLEW microservices architecture.

 6

Figure 1. CLEW microservices architecture.

The CLEW’s software components are basic and can run on multiple platforms. The third-party
tool, The Language Applications (LAPPS) Grid, is better supported on Linux or Docker
container environments. All other services run well on Windows or Linux. The CDC and FDA
services run sufficiently on a machine with normal resources, for example two CPUs with 4 GB
of RAM.

Description of Services

The CLEW User Interface
This is the front end of the CLEW. It hosts the information on NLP Basics and links to some of
the other services on this list.

NLP Basics
This area provides basic NLP information for novice users. It provides detailed information on
NLP rule-based and machine learning techniques, steps required to develop a statistical NLP
model, and an example pipeline demonstration.

NLP Tools Catalog
This is a list of the open-source tools identified through the environmental scan and literature
review.

NLP Web Services
In this area, test data can be sent to some services to see them in action. This service was
conceived initially to wrap existing NLP framework solutions as RESTful web services. With the
addition of LAPPS to the CLEW, this idea became obsolete, as LAPPS already performs this
task. The project continues to be hosted to show past work.

Cl
ie

nt

CL
EW

 U
se

r I
nt

er
fa

ce
NLP Basics

NLP Tools Catalog

NLP Web Services

CDC Services

Cancer Pathology

CER Service

Coding Service

Feature Library Service

FDA Services

NCBO-ETHER Service

ETHER Services

Ontology Annotation

LAPPS Grid

 7

LAPPS Grid
The CLEW instance of LAPPS Grid provides an environment for NLP experts to develop, test,
evaluate, and share NLP and machine learning pipelines. LAPPS was developed as a
collaborative effort among several universities (Vassar College, Brandeis University, Carnegie-
Mellon University, and the Linguistic Data Consortium at the University of Pennsylvania) and is
funded by the US National Science Foundation. It allows NLP pipelines to be created
dynamically via drag and drop.

CDC Cancer Pathology Clinical Entity Recognizer (CER) Service
CDC’s Cancer Pathology CER service implements a language model for pathology reports to
identify histology, primary site, behavior, laterality, and grade.

CDC’s Cancer Pathology Coding Service
Microservices map the terms extracted by the CDC Cancer Pathology CER service into ICD-O-3
histology and site codes.

Event-based Text-mining of Health Electronic Records (ETHER) Services
FDA services to extract clinical and temporal information using the ETHER application in
combination with cTAKES and other NLP tools.

National Center for Biomedical Ontology (NCBO) BioPortal-ETHER Service
FDA service to extract clinical information using ETHER and NCBO BioPortal.

Ontology Annotation
Services that offer coding for FDA using third-party sites for ontology.

Processing Steps
Figure 2 below identifies the steps required to build an NLP machine learning model. The
CLEW concentrates on a few tasks that enable users to accomplish the steps more efficiently.

 8

Define
Use Case

Collect Data

Prepare,
Explore &
Annotate

Data

Create
Pipeline
(Extract

Features)

Develop
ModelTrain Model

Analyze &
Evaluate

Publish
Model

(Web Service)

Monitor

CLEW Functionality

Figure 2. NLP machine learning processes.

NLP requires continuous evaluation of how the model is performing, retraining the model with
new relevant data, and updating the data to keep the model current. Minor nuances in the data
can drastically change the results or how the model functions. A standard NLP machine learning
model development cycle is demonstrated in Figure 3 below.

 9

LM

Train Fit/Test Validate
(Compare) Score

Workflow Management

 Assign Doc(s)
 Annotate
 (Optional) Review Annotation
 Store

Annotate

Create Gold
Standard

SME

Computational
Linguist

SME

Prepare Doc
Unpack

De-identify
...

Corpora

NLP – Machine Learning
Language Model (LM) Development

Figure 3. NLP – Machine Learning Language Model development cycle.

A gold standard model is important for an NLP solution to meet an acceptable level of accuracy.

Source Code and Instructions
All source code and instructions are provided at the following locations:

CLEW
CDC GitHub: https://github.com/CDCgov/NLPWorkbench

Several projects included on the CDC GitHub are extra tools deployed within LAPPS
Grid, including the HLALAPPSTools, cTAKES-clinical, cTAKES-relational, ETHER-
clinical and ETHER-relational.

FDA GitHub: https://github.com/FDA/

LAPPS Grid
The LAPPS Grid project documentation is available at
http://wiki.lappsgrid.org/Documentation.html and https://github.com/lapps.

LAPPS Grid System Requirements: Linux – Ubuntu (preferred)

https://github.com/CDCgov/NLPWorkbench
https://github.com/FDA/
https://github.com/FDA/
http://wiki.lappsgrid.org/Documentation.html
https://github.com/lapps

 10

CDC Service Installation Instructions
This documentation includes installation instructions for all services developed as part of CDC’s
cancer pathology pilot. Five types of services are provided:

• HLA Post-Processors for LAPPS.
• CER pipelines.
• CER server.
• Cancer pathology coding service.
• Feature library web page.

HLA Post-Processors for LAPPS
Two Python packages are required:

• lxml
• requests

The source code is in CDC’s GitHub under HLALAPPSTools at
https://github.com/CDCgov/NLPWorkbench. Each module contains one Python file and one
XML configuration file. Eight post-processors must be installed.

1. Copy the source code in HLAPostProcessors into the galaxy/mods/tools directory where
the LAPPS tools files are stored.

If you are in the home directory
cd galaxy/mods
cp –r /home/user/HLAPostProcessors tools

2. The tool configuration in the file galaxy/mods/config/tool_conf.xml must be extended
with the HLAPostProcessors configuration. Add the new section configuration below to
the configuration file:

<section id=”postprocessors” name=”HLAPostProcessors”>
 <tool file=”HLAPostProcessors/PostTokenizer_GATEDef.xml”/>
 <tool file=”HLAPostProcessors/PostTokenizer_StanfordDef.xml”/>
 <tool file=”HLAPostProcessors/PostTokenizer_OpenNLPDef.xml”/>
 <tool file=”HLAPostProcessors/PostSentenceSplitter_GATEDef.xml”/>
 <tool file=”HLAPostProcessors/PostSentenceSplitter_StanfordDef.xml”/>
 <tool file=”HLAPostProcessors/PostSentenceSplitter_OpenNLPDef.xml”/>
 <tool file=”HLAPostProcessors/POSPostProcessDef.xml”/>
 <tool file=”HLAPostProcessors/FeatureExtractor_Def.xml”/>
 <tool file=”HLAPostProcessors/FeatureExtractor_GATEDef.xml”/>
</section>

https://github.com/CDCgov/NLPWorkbench

 11

3. Restart LAPPS to enable the new tools. An example workflow demonstrating how these
post-processors work has been shared in LAPPS. The command to run them locally is
described in README.md.

CER Pipelines
This pilot is CDC’s implementation of a language model to extract relevant information from
cancer pathology reports. It was built using Python and Natural Language Toolkit (NLTK) and
uses special algorithms for NLP machine learning training and testing.

Build requirements include:

• Python 2.7
• Apache Server
• Several Python dependencies

A machine with two CPUs and 4 GB of RAM can process about one document every 30
seconds, assuming the documents are one page in length. For training the model, a 64 Core
machine must run for about 24 hours with a corpora of about 3000 annotated documents.

The following Python packages are required:

• lxml
• requests
• zeep
• subprocess
• corenlp
• nltk

All source code is provided at https://github.com/CDCgov/NLPWorkbench under
HLACERPipeline.

The main installation process for CER pipelines is described below.

Install the Appropriate Python Packages
The CER pipelines run successfully on Python 3.5 +. Use the following pip3 command to install
these packages for Python3.6:

sudo pip3 install lxml
sudo pip3 install requests
sudo pip3 install zeep
sudo pip3 install nltk

https://github.com/CDCgov/NLPWorkbench

 12

Install Conditional Random Fields (CRF)
The CRF source files are in the Training folder. To install them, run the command below inside
the CRF++-0.58 directory. A C++ compiler (gcc 3.0 or higher) is required.

./configure
make
sudo make install

Install StanfordNLP Packages
Use the following command to download and extract the Stanford CoreNLP from the official
releases:

wget http://nlp.stanford.edu/software/stanford-corenlp-full-2016-10-31.zip
unzip stanford-corenlp-full-2016-10-31.zip

You may need to install a file extraction utility.

sudo apt install unzip

Define the environment variable $CORENLP_HOME that points to the unzipped directory, and use
the following command to install the Python Stanford CoreNLP package:

sudo pip3 install stanford-corenlp

After the installation is complete, use the following command to run the CER pipelines:

nohup python3 –u Stanford.py > stanford.out &
nohup python3 –u OpenNLP.py > opennlp.out &
nohup python3 –u GATE.py > gate.out &
nohup python3 –u cTAKE.py > ctake.out &

A more detailed description of the input and output format is in the README.md of the GitHub
repository.

CER Server
The CER server takes the text of the report as input, uses the generated model to tag the file, and
generates a file in LAPPS Interchange Format (LIF) with all of the tagged instances.

The following Python packages are required:

• lxml
• requests

http://nlp.stanford.edu/software/stanford-corenlp-full-2016-10-31.zip

 13

• zeep
• bottle
• threading

All source code is provided at https://github.com/CDCgov/NLPWorkbench under
HLACERServer.

1. Install the CER Pipeline.
2. To allow external access to the server, the CER server must be installed using Apache2,

which is based on Python 2.7. Use the command below to install the packages required
for the CER pipeline again with pip from Python 2.7:

sudo pip install lxml
sudo pip install requests
sudo pip install zeep
sudo pip install nltk
sudo pip install stanford-corenlp
sudo pip install bottle

3. Install Apache2 and setup the Stanford server, OpenNLP server and GATE server.

4. If the /etc/apache2/conf-available/httpd.conf configuration file does not exist, create it
and add the following line to the Apache2 configuration /etc/apache2/apache2.conf.

IncludeOptional conf-enabled/*.conf

5. Add the following lines to the /etc/apache2/conf-available/httpd.conf file. Change the
path to the wsgi file as needed.

Server Address: http://hostname.com/cdc_service_stanford
WSGIDaemonProcess cdc_service home=/home/jenny/CDC_Server
WSGIScriptAlias /cdc_service_stanford /home/jenny/CDC_Server /stanford_server.wsgi
<Directory /home/jenny/CDC_Server>
 WSGIProcessGroup cdc_service
 WSGIApplicationGroup %{GLOBAL}
 Require all granted
</Directory>

Server Address: http://hostname.com/cdc_service_opennlp
WSGIDaemonProcess cdc_service_opennlp home=/home/jenny/CDC_Server
WSGIScriptAlias /cdc_service_opennlp /home/jenny/CDC_Server /opennlp_server.wsgi
<Directory /home/jenny/CDC_Server>
 WSGIProcessGroup cdc_service_opennlp
 WSGIApplicationGroup %{GLOBAL}

https://github.com/CDCgov/NLPWorkbench

 14

 Require all granted
</Directory>

Server Address: http://hostname.com/cdc_service_gate
WSGIDaemonProcess cdc_service_gate home=/home/jenny/CDC_Server
WSGIScriptAlias /cdc_service_gate /home/jenny/CDC_Server /gate_server.wsgi
<Directory /home/jenny/CDC_Server>
 WSGIProcessGroup cdc_service_gate
 WSGIApplicationGroup %{GLOBAL}
 Require all granted
</Directory>

6. Use the following command to restart Apache2:

sudo service apache2 restart

After the installation is finished, the server can be called using the script provided in the
CDC_Server_Client directory.

Cancer Pathology Coding Service
This service matches text extracted from a pathology report using the HLACER Pipeline service
above and produces ICD-O-3 coded output for primary site, laterality, histology, behavior, and
grade.

Build requirements include:

• .NET 4.x
• IIS
• Windows 2016 Server
• MS SQL Server 2016 with SQL Management Studio:

o MS SQL Server Express 2017 download location:
www.microsoft.com/en-us/download/details.aspx?id=55994

o MS SQL Server Management Studio 2017 download location:
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-
ssms?view=sql-server-2017

https://www.microsoft.com/en-us/download/details.aspx?id=55994
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017

 15

Configure Windows 2016 Server to Serve ASP.NET based Web API
Add the following roles and features

1. Add the Web Server role; then under Web Server expand Application Development and
select .NET Extensibility 4.6 and ASP.NET 4.6. See Figure 4 below.

Figure 4. Screen shot of Web Server Role setup screen.

 16

2. In Features selection step under .NET Framework 4.6 Features, check to see that
ASP.NET 4.6 is selected. See Figure 5 below.

Figure 5. Screen shot of Windows 2016 Server Features selection under .NET Framework 4.6
Features that shows the selection of ASP.NET 4.

Database Setup
1. Open the command prompt.
2. Type: sqlcmd –s computer_name\sqlexpress – i path_to_script\scripts.sql, press the Enter

key, and wait for the command to complete.

IIS Setup
1. Create a CancerRegistryCodingService folder under C:\Inetpub\wwwroot and copy all

files and folders from the binaries folder of the repository to
C:\Inetpub\wwwroot\CancerRegistryCodingService.

2. Open IIS Manager create a CancerRegistryCodingService application folder under
Default Web Site, and point the physical location to C:\Inetpub\wwwroot\
CancerRegistryCodingService

 17

Figure 6 below shows the completion of the IIS setup items described above.

Figure 6. Screen shot of IIS Manager settings under Default Web Site.

Configure Connection to Database
Open the web.config file in C:\Inetpub\wwwroot\ CancerRegistryCodingService, and change the
database connection string in the following line to point to the SQLExpress on this server.

<add name="eMaRCPlus"
connectionString="Server=computer_name1\SQLEXPRESS;Integrated Security=true; Initial
Catalog=CancerRegistryCoding; MultipleActiveResultSets=true;"
providerName="System.Data.SqlClient" />

Figure 7 below shows the Connections screen after the database has been connected with the
client server.

Figure 7. Screen shot of the Connections screen showing the database is connected to the
server.

 18

Feature Library
The Feature Library takes the folder of text or a .ANN extension file and generates a .BIO
extension file with the features selected.

The following Python packages are required:

• lxml
• requests
• zeep
• bottle
• corenlp
• nltk
• zipfile
• pydot

All source code is provided at https://github.com/CDCgov/NLPWorkbench under
HLAFeatureLibrary.

Before installing the Feature Library, install the CER Pipeline. See the CER Server section
above for instructions.

1. Add the path to bin of the graphvix-2.38 into the PATH environment variable. In
Python, this can be done using the following command. Change the path as needed.

os.environ["PATH"] += os.pathsep + '/home/jenny/CLEW_Feature_Library/graphviz-
2.38/release/bin'

2. Install the Feature Library on the server and the web page. Add the following
configuration settings to the /etc/apache2/conf-available/httpd.conf configuration file,
changing the path to the wsgi file as needed:

Configure server
Server Address: http://hostname.com/clew_feature_library
WSGIDaemonProcess feature_library home=/home/jenny/CLEW_Feature_Library
WSGIScriptAlias /clew_feature_library
/home/jenny/CLEW_Feature_Library/feature_library_service.wsgi
<Directory /home/jenny/CLEW_Feature_Library>
 WSGIProcessGroup feature_library
 WSGIApplicationGroup %{GLOBAL}
 Require all granted
</Directory>

3. Change the server URL in the Demo\FeatureLibrary_Caller.py file, lines 18 and 45.

Configure web page

https://github.com/CDCgov/NLPWorkbench

 19

http://hostname.com/clew/feature_library
WSGIDaemonProcess feature_library_demo
home=/home/jenny/CLEW_Feature_Library/Demo
WSGIScriptAlias /clew
/home/jenny/CLEW_Feature_Library/Demo/Feature_Library_Demo.wsgi
<Directory /home/jenny/CLEW_Feature_Library/Demo>
 WSGIProcessGroup feature_library_demo
 WSGIApplicationGroup %{GLOBAL}
 Require all granted
</Directory>

The feature library is available at http://hostname.com/clew/feature_library/main. A
screen shot of the feature library is shown below in Figure 8.

Figure 8. Screen shot of the Feature Library webpage.

http://hostname.com/clew/feature_library/main

 20

Issues and Possible Solutions

Known Issues
Below is a summary of the issues identified with CDC’s services.

Stanford Service and OpenNLP Service

• Tested externally via proxy for sending 500 requests. The POST requests took 10 minutes
to respond for all requests. The users waited for about 5 minutes. The GET requests took
10 minutes to respond for all requests.

• Both external services and official Stanford and OpenNLP package methods are
implemented to process the tokenizer, sentence splitter, and POS Tagger to reduce the
chance of getting an error. If calling the external services fails, use the other method.

• Potential problems:
o Calling external services too many times at the same time cause a

ConcurrentModificationException or 403 Forbidden error.
o Using the official Stanford and OpenNLP package for large files may cause a

memory error.

GATE Service

• Calling external services for all tokenizer, sentence splitter, POS Tagger and Chunker.
• Potential problem: Calling external services too many times at the same time will cause a

ConcurrentModificationException or 403 Forbidden error.

Possible Solutions on the Client Side
• If sending 500 requests fails for some reports, send the failed reports again after other

requests have finished.
• Sending fewer reports at a time (50 to 100) is less likely to cause an error.

	Contents
	CLEW Team Members
	List of Abbreviations
	Introduction
	System Architecture
	Description of Services
	The CLEW User Interface
	NLP Basics
	NLP Tools Catalog
	NLP Web Services
	LAPPS Grid
	CDC Cancer Pathology Clinical Entity Recognizer (CER) Service
	CDC’s Cancer Pathology Coding Service
	Event-based Text-mining of Health Electronic Records (ETHER) Services
	National Center for Biomedical Ontology (NCBO) BioPortal-ETHER Service
	Ontology Annotation

	Processing Steps
	Source Code and Instructions
	CLEW
	LAPPS Grid
	CDC Service Installation Instructions
	HLA Post-Processors for LAPPS
	CER Pipelines
	Install the Appropriate Python Packages
	Install Conditional Random Fields (CRF)
	Install StanfordNLP Packages

	CER Server
	Cancer Pathology Coding Service
	Configure Windows 2016 Server to Serve ASP.NET based Web API
	Database Setup
	IIS Setup
	Configure Connection to Database

	Feature Library
	Issues and Possible Solutions
	Known Issues
	Possible Solutions on the Client Side

